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1. INTRODUCTION A D SUMMARY

Because of the possible launch configurations required to boost a space shuttle

into orbit, it is anticipated that a large number of control effectors, including both

aerodynamic surfaces and gimballed rocket engines, will be required to'control the

vehicle during ascent through the atmosphere. One objective in controlling the vehicle

is to determine the deflection angle settings of the control effectors required to trim the

vehicle for headwind and sidewind disturbances, and for bias torques due to solid rocket

motor misalignments. Because of the launch configuration and the large number of controls,

the control engineer is faced with two challenging problems. First, to compute the trim

solution may entail solving a system of coupled, nonlinear equations. Second, if the

number of control variables exceeds the number of independent trim equations to be

satisfied, the trim solution is not unique.

To solve the uniqueness problem, additional constraints must be imposed. A logical

:choice for the additional constraints is the minimization of a performance criterion that

penalizes the degradation in vehicle performance caused by large trim deflection angles.

The performance criterion used in this investigation penalizes the following effects:

* Thrust loss (gain) by gimballing the engines away from their nominal condition.

* Thrust loss due to drag caused by deflecting aerodynamic surfaces.

* Excessive hinge moments on aerodynamic surfaces.

* Large movement of the actuators for trim which hampers the flexibility
needed for dynamic response.

The inclusion of a performance criterion in the problem formulation results in an

optimization problem with equality constraints to be solved for the trim solution. This

formulation eliminates the uniqueness problem but the control engineer. is still faced with'

the problem of explicitly solving the equations for the trim solution. Furthermore, the

control engineer is likely to want to perform the trim computations many times in order to

consider changes in the following:

* Flight regime (dynamic pressure)

e Desired trim conditions

e Launch vehicle configuration

e Set of control effectors

* Steady-state wind disturbances

* Performance criterion.
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To serve this need, a computer ptrgram entitled TRIMS was developed to solve the trim

problem numerically. The equations for the trim solution are based on the method of Lagrange

multipliers and in general are nonlinear. Two standard numerical metnods, steepest-descent

and Newton-Raphson, are available for solving the nonlinear equations. Application of

these methods yields a pair of iterative algorithms for computing the trim solution that are

included in the TRIMS program. The program user canselect the desired method at the time

of program execution. The Newton-Raphson method is more efficient for linear or nearly-

linear equations, but may fail to converge in severely nonlinear problems unless started

near the optimum solution. If the trim equations are linear and the performance criterion

is quadratic, then the trim problem can be solved explicitly. For this case the Newton-
Raphson method converges to the exact solution in one iteration. The current version of
the TRIMS program for a Space Shuttle during ascent (described in Appendix C) solves
the lateral trim problem. The lateral-directional dynamics are in the program and the
required data (stability derivatives, moments of inertia, and etc.) supplied by MSFC are
stored internally in the block data subroutine. The program permits multiple-case runs
and the cost of computing a trim solution is minimal. The program is in a modular form
that facilitates changes in the data and/or the equations defining the trim problem.

In computing the trim solution, the control engineer must specify the particular

performance criterion to be used. There is no rule or theory for determining a unique

performance criterion. The usual procedure is to vary the performance criterion and examine
the different trim solutions that result. In the TRIMS program there are fourteen relative

weighting factors in the input data that can be varied in the performance criterion. By
varying these a family of acceptable trim solutions can be obtained for more detailed
examination.

Two methods for determining which of the acceptable trim solutions is preferable were
considered.

One possible method for selecting from among several trim solutions is based on
controllability. If the trim problem is nonlinear, then the controllability of the linear
vehicle dynamics about trim will depend on the particular trim solution. In this case, the
trim solution that results in the most controllable system could be used. The notion of a
controllability index is developed. This index provides a criterion for ranking the trim
solutions according to the degree of controllability. The controllability index is computed
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from a symmetric, positive semi-definite contrgildblity matrix and is defined as the ratio

of the maximum eigenvalue to the minimum eigenvalue of the matrix. This ratio has a

minimum value of unity for an orthogonal matrix. For an uncontrollable system, the

controllability matrix is singular and the value of the controllability index is infinite.

A difficulty with using the controllability index is that the controllability matrix is not

unique and the value of the controllability index varies with the choice of this matrix.

The controllability Grammain I1-' is one possible choice for this matrix. Other controllability

matrices are also considered in the development of the controllability index. A second

method for selecting a trim solution is based on comparing the trim solution to the maximum

allowable deflections. The rocket engines and aerodynamic control surfaces can only

rotate a certain maximum angle. For particular flight times, a maximum hinge moment

requirement can reduce the maximum deflection angle of an aerodynamic control surface

below its physical limit. Obviously, the trim solution must be within these deflection

limits. Moreover, to permit freedom of movement, a control deflection should not be

too close to its angular limit. Hence, the requirement that all deflection angles be within

their limits by a specified margin could be used to select the trim solution. For linear trim

equations, a quadratic performance criterion with a diagonal weighting matrix can always be

found for which the trim solution meets this requirement if such a solution exists at all.

(This property of a diagonal weighting matrix miqht extend to nonlinear trim equations,

but the more general case has not been studied.) The search for a trim solution satisfying

this requirement can be accomplished by varying the diagonal elements of the weighting

matrix using the penalty function method discussed in Section 3.2.

For the lateral trim problem of the Space Shuttle, there are two aerodynamic control

surfaces (aileron and rudder) and five rocket engines (three orbiter engines and two solid

rocket motors). The physical or hard limits on the aileron and rudder deflection are

aileron + 15 0

- 400

rudder ± 300

and, as noted earlier, maximum allowable deflections can be less than these limits due to

hinge moment restrictions which vary with flight time. The physical limits on the rocket
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engine deflections were assumed to be 3C60. The maximum control deflections computed

by the TRIMS program for the lateral trim problem exceeded the limits when the solid

rocket motors are not gimballed. In numerous instances, a deflection angle exceeded

100 degrees. When the trim constraint of zero net side force is removed, the maximum

deflection angles decrease by an order of magnitude and are within the limits.

In addition to the trim problem, the capability of the control system to damp out

perturbations about trim must be considered. This can be identified as the dynamic response

problem. In order to solve the dynamic response problem, it must be determined if the vehicle

has sufficient dynamic control authority after trim conditions have been achieved. An

approach to this problem based on the controllability Grammain used in defining the

controllability index mention previously is studied. The controllability Grammain is used

to compute the energy expended by each control in damping out errors from the trim

conditions. This approach is limited, however, since it does not directly examine the peak

deflection angles nor does it consider the realization of the feedback control system.

It is advantageous to have a single method for solving both the trim problem and the

dynamic response problem. The method should minimize the total control deflection

required both to trim the vehicle and to damp out initial errors and random disturbances.

If the vehicle dynamics are linear, optimum control theory provides the desired method.

In Section 3 .4 the equations for the solution of the optimum control problem are derived

for the case of bias inputs (trim problem) and random inputs (dynamic response problem).

In Section 4.3, this theory is used to design an optimum feedback system for the lateral
control of the Space Shuttle, and the closed-loop performance is simulated for a step

change in side-slip angle. The computations for this example of the optimum control

approach were performed with the aid of the Linear Systems Design (LSD) program

developed at Singer-Kearfott under its Independent Research and Development program
concurrent with this investigation.

It is recommended that further investigation of the trim problem for the Space Shuttle
be performed with the aid of the TRIMSprogram for different combinations of controls (i.e.,
gimbal solid rocket motors), performance criterion, and trim constraints. In addition, a
more extensive design effort using the optimum control approach would merit further

consideration.
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2. PROBLEM DESCRIPTION

The objective of this study is to determine-how the control effectors for the Space

Shuttle can be optimally used to achieve trim and dynamic control in the presence of wind

disturbances and bias torques due to misalignment of rocket engines. Launch vehicles have

in the past been primari ly controlled by gimballing the rocket engines. Various Space

Shuttle configurations now under investigation indicate that engine gimballing will not

provide sufficient control to trim the vehicle for headwind and sidewind disturbances.

Consequently, it may be necessary to use aerodynamic surfaces in conjunction with engine

gimballing to achieve trim.' Because of the severe cross-coupling problems encountered in

the launch configurations, it appears that a large number of control effectors may be used.

If the number of control effectors exceeds the number of quantities to be controlled, then

the set of deflection angles to achieve trim is not unique. Thus, the. control engineer in

this case has a family (most likely an infinite set) of possible trim solutions to choose from.

However; different trim solutions will result in different levels of performance and dynamic

control. Consequently, the objective of the control engineer is to select the trim solution

that provides the highest level of. performance and dynamic control. To achieve this a per-

formance criterion, which ranks the trim solutions according to level of performance and

dynamic control, is defined. The problem then becomes, "What is the unique trim solution

which optimizes the performance criterion ?"

The algebraic equations for computing the trim solution are derived from the differential

equations describing the motion of the vehicle by substituting the desired trim conditions. If

the nLmber of control variables exceeds the number of (independent) algebraic equations, then

the trim solutionris not unique. By addition of the performance criterion mentioned above, a

meaningful optimization problem which can be solved for a unique trim solution, is obtained.

This section develops the general problem in greater detail showing how the trim equations are

derived, from the equations of motion and the mathematical form of the performance criterion.

The general equations for studying the dynamic response about trim are also derived.

2.1 Trim Problem

In general the motion of the vehicle is governed by a set of nonlinear, time-varying,

differential equations of the form

x = a(x,t) +b(6, x, t) + c(x, z,t) +v(t) (2.1)

5



where x(t) = n x 1 vector defining state of the vehicle motion at time t

6(t) = m x 1 vector of control deflections

z(t) = ?. x 1 vector of bias disturbances

v(t) = n x 1 vector of random disturbances

a(x,t) = n x 1 vector function of x and t

b( 6,x,t) = n x 1 vector function of A,x, and t

c(x,z,t) -7 n x 1 vector disturbance function of x , z , and t.

The trim problem is to find the set of control deflections 6 d that yield the desired steady
state trim conditions xd in the presence of bias disturbances zd . The bias disturbances
model the effects of a steady wind and misalignment torques. The trim problem ignores the
random disturbances, i.e., v(t) = 0 is assumed. Therefore, the trim solution must satisfy

d = 0 = a(xd, t) + b(6d, xd, t) + c(xd ,zdt) (2.2)

Let

0 = a(xd,t) + ( 6d,xd,t) + c(xd, zd't) (2.3)

represent the subset of (2) required to calculate the trim deflections 6 where a, b ,
and c are nxl vector functions with n n . In orther words, in obtaining the algebraic
equations in (2.2) from the differential equations in (2.1), it is possible that some of the
equations in (2.2) are satisfied by xd independent of 6d . These equations, although
used in (2.1) for computing the dynamic response, are not used in computing 6d and may
be eliminated from (2.2). This elimination whi'ch results in (2.3) replacing (2.2) will be
illustrated by the lateral control of the Space Shuttle in Section 4.

If m < n then no set of control deflections 6d exists that satisfy (2.3). If m >n
then a solution 6d exists but is not unique. If m =n, there exist a unique solution, but
unless b is a linear function of 6d (i.e., b( 6d, xd, t) = B(xd, t) 6d it may be difficult
to find.

For the case of infinitely many possible trim solutions (m>n), certain solutions are
preferable over others. An example of the latter is a solution in which each deflection angle
is smaller in magnitude than for another trim solution. Trim solutions in which any of the
deflection angles exceed the maximum allowable deflection should be excluded since such
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solutions cannot be realized. Suppose additional constraints in the form of a performance

criterion are included in the problem formulation. The solution that satisfies the trim

conditions (2.3) and minimizes the performance criterion is unique. For this approach the

trim design problem reduces to the appropriate selection of the performance criterion.

The performance criterion denoted by r is a scalar function of the control

r = r(6d) (2.4)

In the case m n the trim problem is to find the set of control deflections

86' = [61, 62 , .,6 m7

that satisfy (2.3) and minimize the performance criterion (2.4). In general, (2.3) and

(2.4) are nonlinear functions of 6d and the resulting optimization problem with equality

constraints can not be solved analytically. Numerical methods for solving the nonlinear

trim problem are developed in Section 3.1.

If the trim equation (2.3) is a linear function of 6d

0 = (xd,t) + B(xd,t) 6d + (xd,z,t) (2.5)

where B is a n by m matrix and if the performance criterion is a quadratic form

r(6d) = 1/2( 6d- 6)'R(6d o) (2.6)

where r is a positive definite matrix and where 6 is the desired trim solution (in most

instances 6 = 0) then the trim problem is said to be linear. The linear trim problem can be

solved analytically and the equations are derived in Section 3.2.

2.2 GENERAL CONTROL PROBLEM

The trim problem is only part of the vehicle control problem. In addition to bias

disturbances, the control system must be able to damp out sudden deviations from trim

and to sustain proper vehicle motion in presence of fluctuating disturbances. An example

is a sudden change or rapid fluctuation in the side wind velocity or equivalently the sideslip

angle / . The capability of the control system to handle rapid fluctuations in / , for

example, is commonly determined by simulating the performance for a step change, impulsive

change, or random noise with a specified frequency spectrum. The control system must be

designed to maintain the control deflections within the physical limits and to return the vehicle
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to trim within an acceptable setting time. This problem can be identified as the problem of

dynamic response about trim. The first step in studying the dynamic response of the vehicle

is to linearize the equations of motion about trim. Let Ax , A6, Az denote deviations of

the state, control deflections, and bias disturbances, respectively, from trim.

X =X -Xd
d  (2.7)

A = 6- 6d

Az = z-z d

Expanding in a Taylor series the nonlinear functions a, b, and c in (2. 1) about trim

conditions results in the approximations

a(x,t) a(xd,t) + [ ba/ax] x

b(x,t) b(xd, t) + [ ab/ ax 6 x + [ ab/ b 8 ]A 6 (2.8)

c(x,t) c(d, t) + [ ac/-x]Ax + b bc/az ]Az

Substracting (2.2) and (2.1) and substituting (2.7) and (2.8) yields the linearized equations

of motion

Ax = AAx +BA6+CAz+v

where

A = ba/x + ab/ x + bc/bx (2.9)

B = ab/ 6 (2.9)

C = 8c/ z

Note that the partial derivatives are evaluated about the trim conditions and that for

particular values of 6 d , xd , zd , t the matrices A, B, and C are constant.

If the total motion (trim + dynamic response) is governed by linear differential

equations then (2.1) becomes

S= Ax + B6 + Cz +v (2.10)

which has the same form as (2.9). The matrices A, B, C in (2.10) are in general a function

of time t . By considering only a number of fixed points along the trajectory the problem
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reduces to a set of matrix equations of the form (2. 10) with constant coefficients.

There are two general approaches for studying the general control problem including

trim and dynamic response.

Approach 1: First solve the trim problem for a set of acceptable trim solutions
by varying the performance criterion (2.4). From this set select
the particular trim solution that leads to the best dynamic response.
Methods for determining the particular trim solution are developed
in Section 3.3.

Approach 2: Formulate a single performance criterion for the general control
problem and solve for the optimum combination of trim solution
plus dynamic response. This differs from the first approach in that
two performance criteria are used in the former-one for the trim
problem and one for the dynamic response problem.

Consider all possible combinations of forces and moments that can be generated by

the controls of the Space Shuttle. This set defines the control authority of the vehicle.

The restrictions on the control authority are of the form of bounds on the deflection

angle, i.e.,

6tmin 6t 6 tmax t= 11, . . . m (2.11)

For most of the controls the maximum deflection and is the same in either direction

II 6tma, ... , m

The primary problem is to find a control solution that satisfies the restrictions (2.11). The

restrictions (2.11) are in terms of the total deflection angles resulting from both trim and

dynamic response requirements. Hence, the second approach is preferable to the first

approach. However, the second approach in general presents more difficult computation

problems. If the equations governing the total vehicle motion are nonlinear then it may be

necessary to use the first approach; the second may lead to an intractable problem. If, on

the other hand, the equations for the total motion are linear, as is the case of the space

shuttle dynamics in Section 4, then a design method in the category of the second approach

results from the application of optimum control theory. The use of optimum control theory

to solve the general control problem with both random and bias input disturbances is

developed in Section 3.4 and the application to the lateral control of the Space Shuttle
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is described in Section 4.3.

Even when the control design is to be performed using optimum control theory, there

are advantages to first solving the trim problem. The trim solution is much easier to compute,

and sufficient control authority must exist to handle at least the trim problem. Furthermore,

the solution to the trim problem can aid in the formulation of the optimum control problem.

The correlation between the trim solution and the optimum control solution is considered

in Section 3.4.1.
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3. ANALYTICAL METHODS

3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM

3.1.1 Lagrange Multipliers

From (2.3) and (2.4) in Section 2 it was shown that the computation of the control

deflections required to trim the vehicle for bias disturbances can be modeled as a problem

of the following form:

Find the vector 6 of dimension m which minimizes a scalar function of 6

min r( 6)
(3.1)

subject to a set of n equality constraints

0 =a + b( 6) (3.2)

For simplicity, the subscript "d" has been dropped from 6d and (2.3) has been rewritten

as (3.2) where

a a (xd , t) + (xd , t)

b 6 (, xd , t)

n n

For a particular point in time t along the trajectory and for a particular set of desired

trim conditions xd and bias disturbances z , the vector a in (3.2) is a constant and

the vector b ia a function of 6 only.

In order to achieve a well-defined optimization problem the performance criterion

r( 6) is assumed to have the following properties: assume that r is differentiable and

let 6 * be the value of 6 that minimizes r( 6) . (Here the subscript d has been

dropped from 6d since just the properties of the performance criterion r are of interest

irrespective of the trim equation (3.2).)

r(6) > r( 6*) 2 0 (3.3)
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Then insome neighborhoods of 8" , the performance citerion has the property that the

gradient tisfies

=0 for 6 = 6*
br / 86 (3.4)

0 for 88*

where br / 8 =- [ r / 681 , . • • , ;r/ S m] . Furthermore the second partial

derivative of the performance criterion or Hessian matrix satisfies 4

2 /82 > 0 for 88*
b2r/ a82 (3.5)

S 0 for 6$2 6*

where (2r/ 3 2) 2 r / b8t bj

The basic approach for solving the nonlinear trim problem given by (3.1) and (3.2 is to

apply the well-known method of Lagrange multipliers.

Define a new scalar function h (the Hamiltonian) by

h( , X) = r( 6) + ' (a +b( 6)) (3.6)

where X is a vector of n unknown parameters, commonly referred to as the "Lagrange

multipliers". The fundamental idea underlying the method of Lagrange multipliers is that

if 6* , * is the solution that minimizes h then 6* is the solution that minimizes r

and satisfies (3.2).

Assuming that the functions r(6) and b(8) are differentiable, the equations for

the minimal solution 6* , X* can be obtained by differentiating h and setting the

derivatives to zero. This gives

br / 6 + X' b/ 6 = 0 (3.7)

a + b( 6) = 0 (3.8)

+ The notation " > 0" means the matrix is positive definite and " >0" means the matrix is

positive semi-definite. For reference purposes see Appendix A for a discussion of

differentiation by a vector.
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This is a system of m+n equations in m+n unknown 6 and X . Only in special cases

can (3.7) and (3.8) be solved explicitly. In general, numerical methods must be used to

solve (3.7) and (3.8). Iterative numerical methods for determining the solution 6*

X* that minimizes h given by (3.6), start with an initial guess 6 , X and then

proceed to compute a sequence of solutions

X1 ' 2 ' "6k' "

which converge to the exact solution 6" , X*

6k " 6*

Xk - X

Two such numerical methods are described in Sections 3.1.2 and 3.1.3.

3.1.2 Numerical Solution by Steepest Descent Method

One numerical method, in common use for many years, for finding the minimum of a

function is that of "steepest descent". The steepest descent method is a 1st order gradient

method and uses an iterative algorithm for improving the estimate of the solution so as to

come closer to satisfying the zero slope conditions

6h/66 = 0 and bh/aX = 0

The method computes 6 k+1 ' k+1 from 6
k ; the value of Xk is not used to continue

the iteration. The method partitions the vector 6 according to

6' = Cx lu ]

n m-n

where the subvectors x and u are computed separately.

Application of the steepest descent method gives the following steps for computing

Xk+1, uk+l from xk ' uk

13



1) From xk , uk compute the column vector b( 6)

2) From xk , uk compute the matrices hb / ax , ab / u .

3) Compute the new estimate of subvector x according to

~x= -( ab/x)-1 (a +b(8))

xk+l = xk +Axk

4) From xk+1 , uk compute the row vectors. 8r/ x , 2r / Bu .

5) Compute the vector of Lagrange multipliers according to

X'l = - ( br/x)( ab/bx)I
k+-

6) Compute the gradient of h with respect to u using

ah /au = ar / a u + ~ ( ab/bau)

7) Compute the new estimate of subvector u according to

IAuk = - 2 ah/bu)'

Uk+1 = uk +6 uk

8) Repeat steps 1) through 8) with the updated solution xk+1 u, k+1 until

the total error is very small

11 bxk 112+ 11 6uk 12 < E

where the norms are given by

)I Axk u 2 = Axx k

11 auk 112 = xukuk

A flow chart showing the basic steps required to implement the steepest descent

method for solving the trim control problem on the computer is given in Figure 3. 1. A

graphical interpretation of first order gradient methods is given on p. 20 of [ 2 1.

14



First order gradient methods usually show substantial improvements in the fi-rst few

iterations but have poor convergence characteristics as the optimal solution is approached.

A second-order gradient method, which uses the "curvature" as well as the "slope" at the

nominal point, is discussed in the next section. Second order gradient methods have

excellent convergence characteristics as the optimal solution is approached but unless the

initial guess is in the region of convergence then the method may not converge or may

converge to the wrong solution.

3.1.3 Numerical Solution by Newton-Raphson Method

Newton-Raphson method (or second-order gradient method) for locating the minimum

point of a function uses both the first and second derivative at the nominal point to extrap-

olate a new estimate of the solution. A detailed description of the Newton-Raphson

method is given in e 1 ].

Using the Newton-Raphson method to find the minimum solution of h( 8 , X) given

by (3.6) yields an iterative algorithm for computing the trim solution. To obtain the

equations for computing 6 k+ 1  k+1 from 6k , k , first expand h( 8, X) in a Taylor

series about 6k ' k

1 F 1 88' hX A6
h(, X) =h(6k  Xk)+ h, h + -- -- s--- - + ".

k k 6'1 hh I h 

(3.9)

where

A = 6- 6k (3.10)

hX = X -'

Differentiating (3.6) gives the following set of equations for evaluating the derivatives

in (3.9)

h- ah/6 = br/b6+ '(ab/b6)

hX = ah/a=a' +b'(8) (3.11)
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Figure 3.1 Flowchart of Steepest Descent Method for Solving the Trim Control Problem

INITIAL GUESS xk , uk

(1) b(6) I.

(2)

ab/ x , ab/bu

(3) &x =-(ab/ax)-l(a'+b(

x x +Ax

(4) br/x , br/u

(5) X' = -(r/ax)(bb/bx)

(6)
) h/au = br/au +X'(ab/ u)

(7) Au = - ( ah/u)

u +&u,

(8)

2 NO

YES

TERMINATE
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h = h/822 = 2r/ 62 + X( bb/b82)

h 6X= 2h/66_a ab/b6)'

h b = 2h/ X26= ab/ 6 (3.12)

h = a2h/6X2 = 0hXX

From (3.9) the equations for computing the new estimate of the solution, are:

6k+I = k +668 k
(3.13)

>k+l =  k + k

where the incremental corrections A 6k , 6 Xk are the solution of a system of linear

equations

h 66 h 6X A 6 k h'6
66 k 66 L- (3.14)

h X b X hi

Note that the derivatives are evaluated about the nominal point 6k , Xk

To summarize, the steps in the Newton-Raphson method for computing 6k+ 1

Xk+l from k " Xk are as follows:

1) From 6k compute the column vector b( 6)

2) From 6k compute the matrix ab/6.

3) From 6k compute the tensor 2b/b62

4) From 6k compute the row vector 2r/6 .
2 25) From 6k compute the symmetric matrix 7 r/ 86

6) Compute the first-order gradient terms h6, h according to (3.11).

7) Compute the second-order gradient terms h 6 , h , h 6 according to

(3.12). (Note that h = 0.)

8) Compute the incremental correction to the solution by solving (3. 14) which gives
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6=8 - [R- 1 -R-1 B'(BR- B)-1 BR" ]h'- R-' B'(BR- B')- 1h,

(3.15)

[ak = -[(BR- B')-1BR- ]h' +a BR- B') -Ih'

where the matrices R and B are defined by

R = h6 6

(3.16)
B = h = h'

9) Update the solution according to (3.13).

10) Estimate the error in the solution by computing the norms

\\ b6k 112 = 8' A6k
11 6 112 = A6a 6Xk

\\ Ahk 2 k

11) Repeat steps 1) through 11) with the updated solution 6k+1 ' k+1 until

the sum of the norms is very small as given by

I & 26k 212 + 1 AX k 
2 < E

A flowchart showing the basic steps required to implement the Newton-Raphson

method on the computer is given in Figure 3.2.
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Figure 3.2 Flow Chart of Newton-Raphson Method for Solving the Trim Control Problem

INITIAL GUESS 6 ,X

b(6)

(2) ab/a

(3) a2 b/ 6 2

(4) a8/a6

(5) 2r/ 6 2

(6) h , h 1

(7) h h

(8) A&AX

(9) a=6+46
X=.+A X

(1 0) 2 2
tiddlI IIAAll

2 2 NO
TERMIN ATE YES 11611X+11II<E
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3.2 SOLUTION OF LINEAR TRIM PROBLEM

3.2.1 Explicit Formulas

In the previous section the general nonlinear trim problem defined by (3. 1) and (3.2)

was discussed. The case of a linear trim equation

a + B6 = 0 (3.17)

and a quadratic performance criterion

r(6)= 1/2(8-6 )'R (6- 8) (3.18)

is referred to as the linear trim problem and can be solved explicitly. The scalar Hamiltonian

function corresponding to (3.17) and (3.18) is

h(6,X) = 1/2(6- 80)'R(6 -6 ) + X'(a+B6) (3.19)

The vectors and matrices in the right-hand side of (3.19) are defined below

6 = m - vector of control deflections.

6 = m - vector of desired control deflections.
o

X = vector of Lagrange multipliers of dimension (m-n).

a = constant vector of dimension n

B = constant matrix of dimension nx m

R = constant positive definite matrix of dimension mx m

The trim solution is computed by determining the values of 8 and X that minimize

the scalar function h . Differentiating (3.19) and setting the derivatives to zero gives

(h/8)' = R(8- o) +B'X = 0 (3.20)
(=h/a)' a+8

The vector-matrix form of (3.20) is

R B'
[= (3.21)

B 0 -

Premultiplying both sides of (3.21) by the inverse of the square matrix on the right hand side
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of (3.21) gives that the optimum trim solution is

6 - B#B ]6 0 - B#a (3.22)

where

B# = R -B'(BR-1B') (3.23)

Note that B# is a right inverse of B (i.e., BB# = ) . Substituting (3.22) and (3.23) into'

(3.18) and (3.19) gives that the minimum values of performance criterion and Hamiltonian

function are

h = r = /2 (a+B )'(BR B') (a +B 60)

Consider the example of triming sidewind induced roll and yaw momen ts using aileron,

rudder, and the yaw deflection of a single rocket engine. Setting the rolling and yawing

moment coefficients to zero (C = Cn = 0) gives in vector form

8EY + AR + LCnB  (3.24)

or in slightly different form

t Y tR A 
6C CA R - (3.25)

CnY' CnR CnA Cno

The trim equations given by (3.24) or (3.25) are a set of 2 linear equations in three

unknowns 8 EY R ' 6 A . Since there is one more unknown than equations, (3.24) has

an infinite family of possible trim solutions.

A graphical representation of the possible trim solutions can be seen by depicting

(3.24) in the yaw-roll moment coefficient plane as shown in Figure 3.3. The four vectors

formed by the stability derivatives are represented by solid arrows where the following

numerical values were chosen for the example
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S - 0.20 [CR 0.10 C 0.07 C- 0.6

Cny 0.80 LCnR -0.10 Cn 0.08 C 0.35

The dotted curve in Figure 3.3 represents one of the trim solutions for the case, B = ,

and is the vector diagram corresponding to the left hand side of (3.24). The values of the

deflection angles are

6EY = -0.5 8 R = 2.807 6A = 4.133

and are equal to the lengths of the dotted arrows divided by the lengths of the corresponding

(parallel) solid arrows. The sign of the deflection angle is positive if the dotted arrow and

the corresponding solid arrow point in the same direction, and the sign is negative if the

directions are opposite.

The addition of a performance criterion to be minimized will yield a unique solution

for (3.24). For illustration, one possible choice might be

r( 6) = (Ey/150 2 +( /20)2 +(6A/100)2 (3.26)

where 150 , 200 , and 100 are the corresponding maximum deflections. From (3.25) it

follows that for / = 10

B -0.20 0.10 0.07 a 0.67 (3.27)

0.80 - 0.10 0.08 0.35

and from (3.26)

1/225 0 0
R = 0 1/400 0 6 = 0 (3.28)

0 0 1/100

Substituting (3.27) and (3.28) into (3.22) and (3.23) gives the solution

6EY 0.100

6R = 5.700 (3.29)

6A 1.720
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Figure 3.3 Yaw/oll Coupling Characteristics
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As an example of how changes in the performance criterion effect the minimal solution

suppose in place of (3.26)

r(8) =( EY/200)2 +( 6/200) +( A/200)2

then

6EY 0.100

6 =  R 5.700 (3.30)

aA  1.720
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3.2.2 Performance Criterion Selection

When infinitely many trim solutions are possible, certain solutions definitely require

more control authority than other solutions and should not be used. In particular, given

a trim solution 8 , if it is possible to find another trim solution 8* such that for each

control

,* I <-  t 1 t =  1 ,2,...,m (3.31)

where the strict inequality holds for some controls then 6 should not be used. Property

(3.31) partitions the possible trim solutions into two disjoint sets. If 6 satisfies (3.31) it

will be referred to as an unfavorable trim solution and if 6 does not satisfy (3.31) it will

be referred to as a favorable trim solution. The problem of selecting a form of the performance

criterion that guarantees a favorable trim solution has been solved.

At this point a simple example is helpful in studying the properties of the trim

problem. Suppose there is a single trim equation

0 = 6-2 61 +62 (3.32)

with two controls 61 and 82 . The general form of the performance criterion for the case

of two controls is

2 2
r 1/2r 1 61 + 1/2 r2 2 +r3 1 62  (3.33)

where

R= [ 3r
and

2
1 > 0 , r2 > 0 , r3 < r1r2

One approach for graphically representing the trim problem is to consider 6 = C 8 , ... 8 1m
as defining the coordinates of a point in an m-dimensional space which shall be referred to

as the solution space. This approach is different from the graphical representation in

Figure 3.3 where each coordinate corresponds to one of the scalar trim equations and hence
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might be referred to as the equation space representation. For this example the loci of

possible trim solutions in the solution space is the straight line defined by (3.32) and shown

in Figure 3.4. The segment of the straight line between points P and Q defines the set

of favorable trim solutions and the remaining two segments on either side of P and Q

define the set of unfavorable trim solutions.

For each fixed value of the performance criterion, there corresponds a closed contour

curve in the solution space. For (3.33), r = constant defines an ellipse centered at the

origin of the solution space. By parametrically increasing the value of r a family of

concentric ellipses of increasing size is generated. One of these ellipses will be tangent

to the straight line passing through P and Q . The point of tangency is the optimum

solution. For example suppose r = r2 = 1 and r3 = 0 then the loci of constant performance

are circles as illustrated in Figure 3.4(a) for r = 0.5 and r = 3.6 . The circle with

r = 3.6 intersects the straight line at the single point 61 = 2.4 and = - 1.2 .

This is also the optimum solution obtained using the formulas (3.22) and (3.23). For the

case r1 = 4, r2 = 1 , and r3 = 0 the optimum ellipse is

2 2
18 = 46 + 62

1 2.

and is tangent to the straight line PQ at 61 = 1.5 and 62 = -3.0

The above example illustrates how varying the weighting matrix R in the performance

criterion leads to different trim solutions. However, there are more ways of varying R

(degrees of freedom) than necessary. This means different choices of the R matrix can

lead to the same optimum trim solution.

The redundancy in the selection of R suggests that R can be restricted to a diagonal

matrix without disregarding a favorable trim solution. This assumption simplifies the selection

of R . For the example illustrated in Figure 3.4, the principle axes of the ellipse will

coincide with the coordinate axes in the solution space when and only when R -is diagonal

(i.e., r3 = 0) . As a consequence, the optimum trim solution for a diagonal R matrix will

always lie on the line segment PQ (region of favorable trim solutions). The optimum solution

point in Figure 3.4 will move from point P to point Q as the ratio of the diagonal elements

r1 / r2 increases from 0 to . Thus increasing the weighting on 61 relative to the
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weighting on 2 causes I 61 to decrease and 82 to increase.

This example illustrates the following general properties of the weighting matrix

in the performance criterion:

Property 1: The optimum trim solution for a diagonal R matrix is always
a favorable trim solution.

Property 2: Any favorable trim solution is the optimum solution for some diagonal
R matrix.

The general proof of the first property is not difficult. Let 6 be the optimum

trim solution for

R = Diag Er1 , . . . , rm

then the minimum value of the performance criterion is

2 2
r = 1/2(r 61 + " . . + rm 6m) (3.34)

Suppose 6 is an unfavorable trim solution, then there exists another trim solution O

satisfying (3.31) for which the value of the performance criterion is

r*= 1/2(r 6*2+ . +r 6 2) (3.35)
11 mm

Comparing (3.34) to (3.35) term by term, it follows from (3.31) and rt > 0 that

r* <r

But r is the minimum value and hence a contradiction! Therefore, 8 cannot be an

unfavorable trim solution.

Given a favorable trim solution 6 it should be possible to find a diagonal R matrix

in the performance criterion for which the optimum solution is 6 . A general method for

constructing such an R matrix or equivalently, a general proof of the second property has

not yet been found.

The formulation of trim control problem given by(3.17) and (3.18) is an optimization

problem with equality constraints. However, as pointed out in Section 2, inequality constraints

also exist due to the physical limitation on the control deflections. For a symmetric control,

these will have the form
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Figure 3.4 Example of Trim Problem and Solution Space Representation
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6tmax = maximum allowable deflection of the ith control

The inequality constraints are not included explicitly in the problem formulation since an

optimization problem with both equality and inequality constraints is difficult to solve.

Instead, the inequality constraints are handled by the penalty function method.

The basic idea of the penalty function method is to repeat the computation of the

optimum trim folution for different R matrices in the performance criterion until each ratio

6t I/ 6 max is less than one and the difference 6max - 6 is sufficiently large to

provide the additional control required to solve the dynamic response problem. The

procedure for varying the elements of R is simplified if R is restricted to be a diagonal

matrix. From the properties of a diagonal R matrix discussed previously, this restriction

does not-exclude any favorable trim solutions but does exclude all unfavorable trim solutions.

As an illustration of how to vary the diagonal elements of R , suppose the optimum

solution for

R = DiagC[r 1,  . . , rmI

results in one of the deflections 6 exceeding its limits. The next step is to increase the

corresponding weighting factor rt and solve the problem again. Repeat this procedure

until 6 is smaller than the maximum deflection. An increase in the weighting factor rt

will cause the magnitude of 6t to decrease at the expense of increasing the magnitude

of other deflection angles. If no adjustment of the weighting factors results in all the control

deflections being within their corresponding limits then the launch configuration does not

possess sufficient control authority. If the limits are exceeded for every control then from

Properties 1 and 2, mentioned earlier, no acceptable trim solution exists.

The modification of the performance criterion to produce a more desirable trim solution

can be facilitated by realizing that for small perturbations the change in the optimum trim

solution is proportional to the change in the weighting factors of the performance criterion.

Computing the differentials of (3.22) and (3.23) for the case 6o = 0 gives

d6= - dB# . a (3.37)

-dB# = (I-B#B)R 1. dR • B# (3.38)
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The derivation of (3.38) makes use of the identity

d(R- ) =-R dR ' R-

From (3.23) and (3.38) it can be shown that

B d6 = 0

which also follows from computing the differential of (3.17). Equations (3.37) and (3.38)

showthat for small perturbations d6 varies linearly with 6R . Let d6t denote the change

in the trim solution due to dRt , i.e.,

dRt - d6 t

Substituting

dR = Iw dRV. t

into (a 24) where wt is an arbitrary scalar results in

d6 = wd6 t

Thus, replacing R by R + dR causes the optimum trim solution to become 8 + d6
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3.3 CONTROLLABILITY AND DYNAMIC RESPONSE

3.3.1 Controllability Grammian

The use of the controllability Grammian for studying dynamic response about trim

is developed below. The trim solution uses part of the control authority. If the vehicle

deviates from trim due to random disturbance or a sudden wind gust then it must be

determined if the control effectors have sufficient authority in reserve to return the vehicle ,

to trim. By using a different trim solution, better dynamic response performance could

possibly be achieved with respect to the control limits. The problem of determining which

controls are most effective in zeroing out deviations is also of interest. If there are more

control effectors available than required it may be possible to disregard those controls

whose effectiveness is small.

Basic Theory

In vector-matrix notation the linearized equations of motion about trim have the general

form

= Ax + Bu (3.39)

where

x = state vector of dimension n

u = control vector of dimension m

The equation for the solution is

t

x(t)= 4(t) x(0) + j Q(t-7) Bu(r)d7 (3.40)
0

where the transition matrix is

c(t) = eAt (3.41)

The control signal that will drive the error to zero at time T is
-1

u(t) =- B''(-t)W -lx(0) (3.43)

where

T
W W(T) = J Z(-t) BB'c'(-t)dt (3.43)

0
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The matrix function W(t) is referred to as the "controllability Grammian" ( 1 ].
Substituting (3.42) into (3.40) and using (3.43), it can be shown that x(T) = 0

A useful criterion for indicating the amount of control effort is given by the integral

T
E = J u'udt (3.44)

0

which may be viewed as proportional to the total "energy" expended by the control effectors

in returning the vehicle to trim. Substituting (3.42) into (3.44) and using (3.43) yields the result

E = x'(O)W-lx(O) (3.45)

Thus the controllability Grammian W(t) provides a means for computing E

Let E denote the "energy" expended by the .th control effector, then

T
Et = J u dt t = 1...., m (3.46)

0

where

u,(t) = B'-I'(-t)W- x(o) (3.47)

and B* is the tth column of the B matrix. Substitutin g (3.47) into (3.46) results in

E = x'(0)W WW W lx(o) (3.48)

with
T

Wt = J (-t)B B '(-t)dt (3.49)
0

The ratio Et/E is a convenient measure for determining the relative effectiveness of the

tth control effector. Upon substituting

BB' = BB + B2 +... + BmB'm 3.50)
1 1 22m m

into (3.43), it follows from (3.45), (3.48), and (3.49) that

W = W1 + W 2 +. + Wm (3.51)
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and

E= E + E + ... +E (3.52)
1 2 n

Another approach for computing E and Et is obtained by rewriting (3.44)as -

E = trace uu'dt (3.53)

Substituting (3.42) into (3.53) gives

E = trace [ B'MB} (3.54)

where

M = ~T '(-t) W-l x(o)x'(O)W-(-t)dt (3.55)
0

Repeating this approach for (3.46) and (3.47) leads to

E = B'MB I, 2,..., m (3.56)

The advantage of using (3.56) in place of (3.49) is that instead of computing W 1 W2 , .. ' W

only have to compute M . The disadvantage is that if the initial state vector x(O) changes

then M must be recomputed where as the matrices W are not a function of x(O) and hence

do not change.

Computation of Controllability Grammian

Several methods for computing the matrix We W(T) defined by (3.43) are discussed below

Eigenvector Transformation

Suppose a new set of state variables q(t) are introduced that are related to x(t) by

q = Qx (3.57)

where by assumption Q is a nonsingular matrix.

Substituting (19) into (1) gives

q =  + Bu (3.58)
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where

A = QAQ

B= QB

Let /(t) denote the controllability Grammian computed from (3.58) then defining

SW(T) and applying the definition (3.43) to (3.58) results in

W= QWQ' or W= Q WQ- (3.59)

If

A = Diag [ 1 , ' 2' " " "'

where X are the eigenvalues of A then the columns of Q-1 form the corresponding set

of eigenvectors. In this development it is assumed that the eigenvalues are real and distinct.

The method can still be applied to the complex and the multiple eigenvalue case but the

computations are more complicated. This method will not be generalized because it is

intended only for illustration purposes and as a means for checking the other methods. If

A is a diagonal matrix then the transition matrix is a diagonal matrix with diagonal

elements.

t Xtt

which upon substitution into the definition of the controllability Grammian (3.43) gives that

the element of matrix W in row t and column j is

T

Wt = (3 .60)

where b t is the vector of dimension m formed by the tth row of B, i.e.,
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Integrating (3.60) gives

,tj = 1 n

Combining (3.59) and (3.61) defines the eigenvector transformation method for computing W

To illustrate, consider the example

-1 2 0 1.5 -1 T = 0.5

0 -3 0 B= - 4 2 m 2 (3.62)

1 2 0 10;5 -25 n 3

If the transformation matrix and its inverse are

-2 -2 0 - 0.5 0 -1

Q = 0.25 0 - 0.25 Q0 0 1
0 1 0 -0.5 -4 -1

then

-1 0 0 5 -2

A= 0 -2 0 B = 3 6

0 0 -3 -4 2

Substituting into (3.61)

24.92 3.48 -38.33

= 3.48 71.88 0.0

-38.33 0.0 63.62

and next substituting W into (3.59)

31.51 -44.45 38.48

W = -44.45 63.62 -44.45 (3.63)

38.48 -44.45 1195.47

Numerical Integration

Let F(f) represent the integrand of (3.43), i.e.,
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T
W = Fdt (3.64)

0

Differentiating F results in the matrix differential equation

- F = AF + FA'

Integrating both sides of the above equation from 0 to t gives the following linear

matrix differential equation for computing the controllability Grammian W(t)

-\ = AW + WA' - BB' , W(0) = 0 (3.65)

The solution to (3.65) at t = T is the value of the integral (3.43). Similarly, the linear

matrix differential equation for computing Wt(t) is

SAW + WA' - BB, W(0) = 0 (3.66)

, = 1, . . ., m

A computer program for calculating the controllability Grammian by numerically

integrating (3.65) was developed.. The output form the program for the example (3.62) is

shown below and required 0.43 seconds of cpu on the IBM 370.

MATkIx A

-0.100000e 01 O.OUOOFE 01 0.0
0.0 -0.3UOOoUE 01 0.0
0.10UOOU 01 0.20000~E 01 -0.2UOOOO00 01

MAT.Jx 4

0.1b,0000. 01 -0.100000t 01
-0.400000E 01 (0.200000E 01
-0.10b000E 02 -0.250000E 02

MATRIX w

0.315126E 02 -0.44450 E 02 0.384759tE 02

-0.444507E 02 0.636177£F o -0.444507E 02
0.384769t 02 -0.444b01E 02 0,11545 t 04

The computer solution of W agrees with the solution (3.63) calculated by hand.
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Recursive Algorithm

Suppose the objective is to compute the controllability Grammian for t = T, 2T,

3T, . .. , NT . Let W(n) denote solution of (3.65) for t + nT and define

a= (-T)

A recursive algorithm for computing W(n), n = 2, 3, . .. , N from W(1) and Q is

developed below. From (3.64)

nT+T nT+T nT
W(n+l) = f Fdt= f Fdt + Fdt (3.67)

0 nT 0

Let = t - nT and from

" (-t) =- (-4-nT) =  nD(-

it can be shown that

S nT+T T T
S F(t)dt S F(4+nt)d = Qn F F()dgn' (3.68)

nT 0 0

Substituting (3.68) into (3.67) and using the definition (3.43) results in

W(n+l) = nnW(1)d' +W(n) (3.69)

From (3.69) it can be shown by repeated substitution that

W(n+l) = OnW(1)On' +. .. + OW(1) ' + W(1) (3.70)

From (3.70) it can be readily proven that

W(n+l) = OW(n) C' + W(1) (3.71)

Formula (3.71) can be used to reduce the amount of numerical integration. To compute W(t) at

t + NT instead of numerically integrating (3.65) from 0 to NT , only integrate (3.65) and

- = A4 , (0) =

from 0 to T and then use (3.71)
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3.3.2 Index of Controllability

When the general vehicle dynamics are nonlinear, then the linear equations (2.9)

for the dynamic response about the trim solution 6d are a function of 6d . Hence, the

controllability of the linear system (2.9) varies with the choice of the trim solution.

Quantification of controllability provides a measure for determining the trim solution that

results in the most controllable linear system. In the previous section, the controllability

Grammain W(t) at t = T is used evaluate the integral (3.44) for the scalar E which may

be viewed as the energy expended by the control effectors in returning the vehicle to trim

during a time span of T seconds. One possible means of quantification is the use of E

to indicate the degree of controllability. In this section another means of quantification

is developed. An index of controllability is defined as the ratio of maximum to minimum

eigenvalues of W(T) or some other controllability matrix.

The time-invariant linear system (3.39) is said to be controllable, if it is possible to

find an input u which reduces an arbitrary initial state to zero in finite time T . A

necessary and sufficient condition for the system to be controllable is that the controllability

Grammain W(t) defined by (3.43) be nonsingular for some finite t . If W = W(T) is

nonsingular, then (3.42) defines one of the many possible inputs u that satisfy the definition

of controllability. Another matrix often used to study controllability is

t
P(t) = Q(r)BB' 4)(r)dt (3.72)

where C(t) is the transition matrix (3.41). The matrix P(t) is related to W(t) by

P(t) = Q(t)W(t)ZV'(t) (3.73)

and can be identified as the covariance matrix of the state x(t) when u(t) is white noise

having a spectral density of unity. It follows from (3.73) that the system is controllable

if and only if P(t) is nonsingular for some finite t . If the system (3.39) is stable, then

the integral for P(t) exists as t -* m and the asymptotic value

P = lim P(t) (3.74)
t - o

is the solution to the algebraic equation
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AP + PA' + BB' = 0 (3.75)

It is well known that P(t) or W(t) is nonsingular if and only if the matrix

K = B,AB, . . . , Ak+lB] (3.76)

has rank k = order of the system. The rank of K is equal to the rank of kx k symmetric

matrix

Q = KK' = BB' +ABB'A' + . . . +Ak+lBB(A') k - 1  (3.77)

which is more convenient than K for testing controllability.

Indices of Controllability

The necessary and sufficient conditions for controllability of a time-invariant system is

that a certain matrix be nonsingular. Possible choices of the test matrix that are symmetric,

positive-semidefinite include W(t) , P , and Q . This controllability is a property that a

given system theoretically either possesses or does not possess. In practical applications,

however, there may be instances in which a system may be nearly uncontrollable in the sense

that certain initial states may be much harder to reduce to zero than others. Evidence of such

situations is that the matrices tested for controllability are nearly singular, i.e., poorly-

conditioned. It is thus appropriate to use conditioning of a relevant matrix as an index of

controllability. A useful measure [4, 5] of the conditioning of a matrix F is

k(F)= II F I" If F-1 I (3.78)

where II F II denotes the norm of the matrix F defined by

II F J sup jI Fx I

Ix II 1

where II x II is a suitable vector norm. When the Euclidian norm, i.e.

II x II =  r

is used, then, for a symmetric matrix F,
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k(F) = max /X min  (3.79)

where Xmax and X min are the eigenvalues of largest and smallest magnitude, respectively.xmax mm

Clearly k(F) > 1 and reaches the lower limit only when I Xmax  =  Xmin , i.e.

when all eigenvalues are equal in magnitude. The condition k(F) > 1 also holds for other
norms, as shown in [51.

The quantification of controllability (and/or observability) was considered earlier

by several investigators. Kalman, Ho and Narendra [ 51 considered using the trace or

the determinant of the inverse of the controllability matrix as indices of controllability,

and Johnson [7 1 considered the determinant as an index of controllability, in greater detail.

The shortcoming of the earlier indices of controllability is that they depend on

the scale of the-variables used in the problem. For example, multiplying earch control

variable by a constant say c , is equivalent to multiplying the B matrix by the same

constant and hence the controllability matrix Q as defined by (3.77) or P as defined

by (3.74) is multiplied by c Hence the trace of P-1 or Q is multiplied by -2k
On the other hand the conditioning number is obviously independent of a scale change,

either of the control variables or of the state variables. The conditioning number, how-

ever, does depend on the choice of state variables, as the following examples indicate.

Example - Consider the system having the transfer function

H(s) = Y(s) s +a
U s (s + 1)(s +2)

It is clear that if a = 1 or 2 the system is either not observable or not controllable or

both. The objective of this example is to show the behavior of the controllability

index as a -~1 or 2

In order to examine the controllability and observability of the system it is

necessary to define a suitable set of state variables. In this example the state variables

are defined as those of two canonical forms. The Jordan normal form and the companion

form.

40



Jordan Form - The Jordan form can be obtained by expanding H(s) in partial fractions:

a-1 a-2
H (s)=- -

s+1 s+ 2

Two block diagram representations of H(s) are given in Figure 3.5. For Figure 3.5(a),

the state and output equations are

= -x + u -1 011
1 1 A= 0 -2 B= 1

= - 2 x + u
2 2

y = (a-1)x - (a-2)x C Ea-1, -(a-2)]
1 2

For Figure 3.5(b) the state and output equations are

= -x + (a-1)u -1 0
1 1 A= B(a

0 -2 -( -2

= -2x - (a-2) u
2 2

y= x +x C= 1 1]
I 2

It is thus seen that the A matrix of both representations are identical and also

A = A' . Moreover, B' of Figure 3.5(a) equals C of Figure 3.5(b) and C' of

Figure 3.5(a) equals B of Figure 3.5(b). Hence it follows that observability of Figure 3.5(a)

corresponds to controllability of Figure 3.5(b), and vice-versa. Accordingly, examining

the controllability of Figure 3.5(b) is equivalent to examining the observability of

Figure 3.5(a).

The controllability matrix K of the system of Figure 3.5(b) is

a-I -(a-i)
K -(a-2) 2(a-2)
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Hence 2(a-1)2 -3(a-1)(a-2)

Q = KK'= -3(a-1)(a-2) 5(a-2)2

The characteristic equation of Q is

-2 X(trA)+ IA= 0

where trA = 2(a-1) 2 + 5(a-2)2

IA = (a-1)2 (a-2)2

There is a characteristic root at X= 0, for a = 1 or a = 2, and these are the

values of a for which the system is not controllable, as expected. The condition

number of Q , as defined above, is

trQ + v(trQ)2 -4] Qk (Q) =

trQ- (trQ)2 -41Q

A curve showing the behavior of k(Q) vs the parameter a is shown in Figure (3.6). It is

observed that k(Q) tends to infinity as a - 1 or as a -. 2. It is interesting to note,

however, that k(Q) reaches (local) minima of 37.9 at a = 1.61 and a = 3.72. This would

suggest that if a were adjustable, the controllability (or observability) can be optimized,

in the sense of minimizing k(Q) by using a= 1.61 or a = 3.72.

Instead of k(Q) we can determine k(P) after solving for P by use of (3.77)

The solution of the latter is

(a -1)2 (a-1)(a-2)

(a-1)(a-2) (-2)

3 4
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X1 a- a- xl

-I

-(a -2) -(a -2)x 22

x2

-2 -2-2

(a) (b)

FIGURE 3.5: JORDAN CANONICAL FORMS OF
TRANSFER FUN CTION IN EXAMPLE

U

y,
a-3a

-3 -2 -3 -2

(a) (b)

FIGURE 3.8: COMPANION FORM OF TRANSFER FUNCTIONS
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whence trP = + (a

P i (a-1)2 (a-2)2

The resulting curve for k(P) is also shown in Fig. 3.6. It is observed that k(P) attains

minima of about 34.0 at a - 1.5 and a ,1.4.

It is noted that the minimum value of the conditioning number is almost equal for

P and Q and one minimum occurs (as expected) between a = 1 and a = 2. The

locations of the other minima are quite different, but the general shapes of the curves are

remarkably similar.

It is of interest to examine the effect of adding another independent input on the

controllability of the system. Suppose, for example, another input say u was added to
2

the first state, resulting in the equations

>i = -xI + (a-1)u 1 + U2

2X2 = -2x 2 (a-2) u

The corresponding B matrix is now

a-1[
B -(a-2) 0

The controllability matrix is now

K a-1 -1 -(a-1) -1

-(a-2) 0 2(a-2) 0

and

2(a-1) 2 +2 -3(a-1)(a-2)
Q = KK' =

-3(a-1)(a-2) 5(a-2) 2
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likewise

(a-1)2+1 -(a-1)(a-2)
P= 2 3

(-1)(a-2) (a-2)2

3 7

P and Q are now singular for only one.value of a , namely a = 2; obviously

x2 is not controllable for a = 2.

The curves of k(P) and k(Q) are shown in Fig. 3.7. It is noted that the addition

of input u2 has the effect of reducing the conditioning number for all values of a-, as

would be expected.

Companion Form - Two alternate companion forms that realize the transfer function H(s)

are shown in Fig. 3.8 (a) and (b). The corresponding matrices are as follows

Figure 3.8(a) A 1 B=a 1 01
A -2 -3 a -3

Figure 3.8(b) 0 1 [
A= L. B= 01 C a 11

Since the C matrix of Fig. 3.8(a) is independent of a it is natural to examine the behavior

of this realization for controllability. Likewise, it is natural to examine the realization of

Fig .3.8 (b) for observability.

For the system of Fig. 3.8 (a) it is found that

K= [ 3 a -3

a -3 -3a +7

wa2 -6a+10 -3a2 + 17a - 2
whence Q = KK' =

L-3a 2 +17a -24 10a2 - 48a 58
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and hence tr Q = 11a 2 -54a+68

I Q = (a -1) 2 (a -2)2

Solution of (3.75) for P gives

a 2 +2 1
12 -

S. a2 -6a + 11
2 6

with tr P =  (a2 -4a+8)

P =  (a - 1)2 (a-2)2

Curves showing k(P) and k(Q) as functions of a are given in Figure 3.9. It is

noted that although local minima occur for both k(P) and k (Q) for 1 a <2, the minima

attained exceed 1000 and hence would indicate that operation with a in this interval is

undesirable. A very sharp local minimum in k(Q) of about 1.4 occurs at a 2.7 , and

would indicate that operation at this value of a is, in a sense, optimum; k(P) on the

other hand does not have any other minimum, but tends to unity as a -. m. This corresponds

to the case in which the "feedforward" gain (to x1 ) is negligible in comparison to the

direct gain (a-3).
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3.4 OPTIMUM CONTROL APPROACH

3.4.1 Optimum Control Computation

If the general control problem described in Section 2. 1 can be formulated as an optimum

stochastic control problem for a linear process with a quadratic performance criterion than a

linear feedback system can be designed to solve both the trim problem and the dynamic response

problem. The theory tocompute such a feedback system is developed in this section and will

be applied in Section 4.3 to the lateral control of the Space Shuttle.

The linear stochastic optimum control problem with bias inputs'is defined by the following

equations in vector-matrix notation

Process Dynamics:

= Ax + Bu + Cz + v z = constant (3.80)

E(v} = 0 E(vv') = V

Observation Equation:

y = Hx +w
(3.81)

E[w} = 0 Efww'} W

Performance Criterion:

J(u) = E( (x'Qx +2a u'Ru)ds y(,) for7Trt) (3.82)
t

a = scalar parameter

where

x = state vector

u = control vector

y = output vector

z = bias vector

v = input noise vector to process dynamics

w = sensor noise vector

Equation (3.80) is identical to (2. 10) except the vector of deflection angles is denoted by u

instead of 6 . The stochastic optimum control solution is denoted by u in order to distinguish
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it from the control solution 6 obtained by solving the trim problem. This distinction is

helpful in the next section when the correlation between u and 6 is developed. In the

usual problem formulation, the scalar parameter a is not present in (3.82) since it can be

incorporated in the R matrix. In this case, however, the scalar parameter a is useful

in deriving the correlation between u and 6

If the "bias term" Cz was not present, then the optimum control problem defined by

(3.80) - (3.82) would be in the standard form. By defining z as part of the state vector,

(3.80) - (3.82) may be rewritten in the standard form. The resulting augmented dynamics are

x= -x + Bu +v (3.83)

y = x + w (3.84)

J =E (x'Qx+ a u'Ru)ds y(7) for 7T t (3.85)
t

where

x C B Q[:] 0oo
z 0 E 0 0 0

v V 0 :
v= V= = [H 0

f 0

The solution to the optimum control problem defined by (3.83) - (3.85) is given by the

equations

Deterministic Quadratic Optimum Control:

u(t) = - Fx(t) (3.86)
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where F = (1/a )R 1B'M (3.87)

MK + l' M - (1/a2)MFR-1B'M + - = 0 (3.88)

Kalman Filter:
A ^ A

x Ax + Bu + K(y-H-x) (3.89)

where

K = PT'w - 1  (3.90)

0 = AP + PA' - PH'W- HP + V (3.91)

The feedback control system defined by (3.86) - (3.91) is divided into two parts in tandem.

First, a Kalman filter computes the optimum estimate of the augmented state x from the

sensor measurements y . Next, feedback gains multiply the estimated state x to yield the

control signal. In the event that the augmented state vector x can be measured perfectly,

i.e.,

y-x

then, the Kalman-filter is not required. In this case the control system is defined by (3.86) -

(3.88) where x x .

Partitioning the augmented state vector into x and z simplifies the equations (3.86) -
(3.91) for the control design. The deterministic quadratic optimum control is considered first.

By partitioning the matrix M according to

M M2

M = M2 M 3

the optimum control solution (3.86) can be rewritten as

u(t) = Ux(t) + u(t) (3.93)

where

-1
u (t) = - 1/2 R B'Mlx(t) = F t)

uz(t) = - 1/r 2 R-B'M2 z = - Fz(t)
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The symmetric matrix M is the positive definite solution of

MIA + A'M1 - 1/a2 M1BR- 'M 1 + Q =0 (3.94)

and the matrix M2 is computed from M according to

M2 = - (A' - 1/a 2 M BR- 1 B') MC (3.95)

In the derivation of (3.94) and (3.95) it is assumed that E = 0 in " which corresponds

to the assumption z = constant

Similarly, by partitioning the matrix P according to

= [P2; PP

the equations (3.89) - (3.91) for the Kalman filter become

= AA + Bu + C. + Kx(y-Hx) (3.96)

S= E. + K z(y-Hx)

and

K = P H'W - 1

(3.97)

Kz P'H'W 1

The partitioning of the P matrix does not simplify the computation of the submatrices P1 and

P2 as in case of the matrix M . Hence, P1 and P2 are computed by solving (3.91) for the

positive definite covariance matrix P . In the computation of P it is assumed E # 0 and

"3. 0 . If '= 0 then P2 = P3 = 0 . This implies that the bias disturbances z can be

determined perfectly which is not realistic. A small amount of damping (E f 0) is included

in the noise model of bias disturbances in order to yield a finite value of P3
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3.4.2 Correlation Between Trim Solution and Optimum Control Solution

There is a relationship between the optimum control approach and the trim control

approach. This relationship relates the optimum steady state control value u(=) to the trim

solution 6 for the case when the control weighting matrix R in the performance criterion

(3.82) of the optimum control approach and in the performance criterion (3.19) of the trim

control approach are the same.

The derivation given below is for the case of complete state feedback for which (3.92)

holds. it appears that the proof extends to the more general case in which the optimum.

control system includes the Kalman filter to estimate the state. A detailed proof, however,

has not been developed for the more general case.

Substituting (3.93) into (3.80) yields for the case of complete state feedback the closed

loop dynamics

= Ax + Cz (3.98)

where

A = A - 1/ 2 BR B'M1

C C - 1/a2BR- B'M2

Since the matrix A is asymptotically stable, setting = 0 in (3.98) results in the formula

x(-) =-A -1z (3.99)

for computing the steady state value of the state vector. In turn, substituting (3.99) and

(3.95) into (3.93) gives that the steady state value of the control vector is

u(=) = u ()+ u (C) (3.100)X Z

where

-1 -1
x() = R B'M (a2) Cz (3.101)

uz(c) = R B'(o2A') M Cz (3.102)
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Next we will consider how u(~) varies with the scalar parameter a in the

performance criterion (3.82). In particular what is the limiting value of u&) as a

approaches zero. In determining the limiting solution, we must take into account the variation

of the matrices M 1 and M2 with a . A solution of (3.94) is sought in the form of a series in

ascending power of a:

M = N O +UN +o2 N2 +. . (3.103)

In papers by Friedland t8] and Hutton [9], it is shown that the following equations:

NOB = 0 (3.104)

NOA + A'NO + Q - N BR -B'N 1 = 0

(3.105)

NA +A'N -N2BR B'N 1 - N BR B'N2 01 12 1 1 2

must be satisfied if (3. 103) is a solution to (3.94). The above equations are formed by

substituting (3.103) into (3.94) and equating matrix coefficients of like powers of a . By

matrix manipulations of (3.104) and (3.105), it is shown in [8] that N O is the positive semi-

definite solution of

0= NA[I - B(B'QB) B'Q + [I - QB(B'QB) B' A'N + Q - QB(B'QB) B'Q

(3.106)
- NoAB(B'QB)' B'A'N

After solving (3.106) for N O , we can solve (3.105) for the positive semi-definite matrix N

Consider the asymptotic value of

(g2A) = (a2 A - BR B'M1) (3.107)
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as a approaches zero. For all nonzero a , the matrix M1 is positive definite. From

(3. 104), the matrix M1 is positive semi-definite at a = 0 . However, if the first term
2

aA in (3. 107) decays to zero more rapidly than the second term, then

( A) -M 1 (BR -1B') - 1 as a - 0 (3.108)

provided BR B' is positive definite. Substituting (3.103) into (3.107) and using (3.104)

gives that

[cr2A = [oA - BR_ 1B'(NI +oN 2 +., )-1 . (3.109)

The dominant term in (3.109) is BR-1B'NI which is derived from the second term in (3.107)

and indicates that (3. 108) is valid.

Substituting (3. 108) into (3.95) and (3.98) gives

-1 1lim M2 = -(BR B') C (3.110)
a-O

lim C = 0 (3.111)
a- 0

Further substituting (3.108) into (3. 101) and (3. 102) and using (3.111) yields the results

lim u(') = lim u () = - R B'(BR- B')- Cz (3.112)
Cr'O '-4 0z

lim u () = 0 (3.113)
a-0 x

The trim control problem is to find the set of controls 6 satisfying

0 Cz + 86 (3.114)

and minimizing the performance index

J = 1/2 6'6 (3.115)
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The solution to (3. 114) and (3. 115) is

1--1 -1
6 = - B(BR B') Cz (3.116)

Comparing (3.116) to (3. 112) provides the fundamental result that

6 = limu(-) if O= k2R (3.117)
0a-~

where k is an arbitrary scalar. Thus the steady state value of the optimum control solution

in the case of unlimited control authority (control weighting matrix R in the performance

criterion goes to zero) is equal to the trim solution provided the relative control weighting

matrices are the same in both cases. This provides a correlation between the optimum

control solution and the trim solution.
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4. SPACE SHUTTLE CONTROL

Control of the Space Shuttle is studied during ascent when more control effectors

are available than required. The analytical methods developed in Section 3 are applied to

the lateral control problem. An illustration of the Space Shuttle configuration, given in

Figure 4.1, shows the two aerodynamic surfaces and five rocket engines available for control.

For purposes of later reference these controls are identified as follows:

1) top orbiter rocket engine

2) right orbiter rocket engine

3) left orbiter rocket engine

4) right solid rocket motor

5) left solid rocket motor

6) aileron

7) rudder

By varying the angular position of these controls, seven independent means of lateral control

are achieved. But only three independent controls are required, leaving four redundant

controls. If the solid rocket motors (SRM) are not gimballed then the number as independent

controls is reduced to five, leaving two redundant controls. The results in this report are

for the latter case. However, the equations and computer programs used to perform the

calculation of the control deflections include the possibility of gimballing the SRM.

4.1 Space Shuttle Dynamics

A mathematical model describing the lateral motion of the Space Shuttle is given in

this section. This description entails an extensive number of the parameters defined in

Appendix B together with a tabulation of their numerical values .

The set.of.differential equations describing the translational and rotational motion of the

vehicle are based on summing the forces and moments along the body axes of the vehicle *.

The body axes are defined as a Cartesian coordinate system fixed to the vehicle and whose

origin is located at the center of mass as shown in Figure 4.2. The attitude and rotational rate

* The notation and definitions used for the aerodynamic terms in the report are in accordance

with [ 1 i.
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Figure 4.1 Ascent Control Configuration of Space Shuttle
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of the vehicle are defined by the Euler angles and the components of the angular velocity

vector along the three body axes. Specifically

<p = roll angle

8 = pitch angle

= yaw angle

p = roll rate

q = pitch rate

r = yaw rate

Figure 4.2 Body Axes and Notation

y

x

z
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The positive directions are as shown in Figure 4.2. Upper case letters denote the total motion

(Nominal and Perturbation) of the vehicle. The velocities, forces, and moments about the

three body axes are defined as follows:

U, X = forward velocity and force

V, Y = side velocity and force

W, Z = downward velocity and force

L = rolling moment

M = pitching moment

N = yawing moment

The kinematic and dynamic equations describing the lateral motion of the vechile are

Y= m[V+RU-PW-gcos6 sin ]

L=IP-Iz R + QR(I-I) - PQ (4.1)

N= -I P+IR+ PQ(I-I +I QR
xz z y x xz

and

=P + Q sin dtan 8 + R cosctane
(4.2)

- (Q sin(D+R cos) sec e

where the moments of inertia are defined by

I (yz2) dm I = (x2+z2 ) dm
x Y (4.3)

Iz = (x2 +y )dm Ixz = xzdm

For this investigation no data was available on I , thus the approximation I = 0 is
xz xz

used. The (total) vehicle motion modeled by (4. 1) and (4.2) can be partitioned into nominal

plus perturbation motion by substituting

U =U +u P =P +p 6=6 +e
o o o

V V +v Q Q = +q 4 = D + (4.4)

0 O 0

W = W +w R = R_ +r = +6
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where the capital letters with subscript "o" denote the nominal motion and the lower

case letters denote the perturbation motion. For the nominal motion along the trajectory

it is assumed that

U 0o P =0 e 0o
o 0 0

V =0 R = 0 .4 =0 (4.5)o o o

W #0 Q #0 , =0
0 O O

The nonzero values are tabulated in Appendix B for each of the twelve flight times along

the ascent trajectory for which the perturbation motion is to be studied. Substituting (4.4)

and (4.5) into (4.1) and (4.2) results in the following linearized equations of motion for

small perturbations from the nominal trajectory:

Y = m e+U r-gcoso5p]

L = I + (I -I ) Q r
x zyo

N = I r+(I-Ix) Qp (4.6)z y x 0

p = p + Qotan o p + tan e r

= (Q 9p+r) sec e
0 0

Adding the equation v = to (4.6) and reqriting in the state space formulation

results in the vector-matrix equation

S= Ax + Bf (4.7)

where the state and forcing vectors are

x = Cy, cp, , v, p, r]'

and

f= [Y, L, N]'

The constant matrix B has' the form
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where

A = Diag[ m, I , I (4.8)

The forcing vector f represents the lateral forces and moments acting on the vehicle and

can be modeled by

Y Y Y Y v
v p r

f L= L L L p + 68 + iz (4.9)
v p r

N N N N r

aerodynamic forces and control bias disturbance
moments forces forces and moments

and
moments

Substituting (4.9) into (4.7) gives the desired vector-matrix equation for the dynamics of

the vehicle

i = Ax + B8 + Cz (4.10)

where

0 0 0 1 0 0

0 a22 0 0 1 a26

0 a 0 0 0 a
A= 3(4.11)

0 a42 0 a44 a45 a46

0 0 0 a54 a55 a

0 0 0 a64 a65 a66

a22 = Q tane a26  tan
22 0 26 0

a3 2 = Qsec a36 = sec

a4 2 = g cos e

a =Y 45 = Y  a = Y -U
44 v 45 p 46 r o

a =v 55 = L a56 = L + Q (I -I )/I
54 v 55 p 56 r oyz x

a64  N 65 N + Q (I -I )/I a66 =N
64= N v  65 p ox ay66 r
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and

3 3

B = O  3 C = C0 ]3 (4.12)

In the remainder of this section, the formulas for computing the matrix elements in (4.9),

which are required for (4.10), are developed.

The formulas for the matrix elements corresponding to the aerodynamic forces and

moments are

Yv = Q C/U Y = 0 Yr = QCy/2Uo

L = QC ,U L = QxbC /2U L = QxbCt/2U (4.13)
v x p/ o P X tpo r x Lr o

N = Q C /U N =Q bC rp/2U N =Q bCn/2U
v zn o p z rpo r znro

where

Q = qS/m Q = qSb/I Q = qSb/.I

q = dynamic pressure

U = nominal velocity in x-direction

S = reference area

b = reference length

c = length of mean aerodynamic cord

Next the expressions for the forces and moments generated by gimballing the rocket

engines are derived. The location and nominal direction of each rocket engine with respect

to the Cartesian coordianate system fixed to the vehicle is shown in Figure 4.3 * . The rocket

engines are numbered I through 5 as indicated in Figure 4.3 and in agreement with the list

of controls at the beginning of Section 4. Let xt , yt , zt denote the coordinates of the

* The location of SRM was not included in the information received from MSFC. This data

was not required since it was assumed the SRM could not be gimballed. However, the equations
and corresponding computer programs include the posibility of gimballing the SRM.
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vehicle center of gravity where ycg 0 . The (position) vector from the center of gravity

to the tth rocket engine is, therefore,

x cg +xt Yt ' cg + z (4. 14)

The thrust vector with magnitude F has the components

(forward). X t = F (cos 6tcos 4t- cos t sin teyt -Sin Stcos Step

(sideward) Yt = F(cos 6tsin t +cost cos 6ey -Sin Otsn 6ept) (4.15)

(downward) Z t = F t(sin 6t+cos t6ept

where the angles defining the direction of the thrust vector are

8 = nominal pitch angle of the tth rocket engine.

t = nominal yaw angle of the tth rocket engine.

6 = pitch deflection of the th rocket engine.

8 = yaw deflection of the tth rocket engine.
eyt

as shown in Figure 4.4. The arrows in Figure 4.4 indicate the directions of positive angles.

The nominal directions of the rocket engines are shown in Figure 4.3 and listed in Table 4.1.

The derivation of (4.15) assumes that the deflection angles are small.

Table 4. 1 Nominal Directions of the Rocket Engines

et t

1 - 180 0

2 - 120 - 3.50

index t 3 - 120 3.50

4 0 - 150

5. 0 150
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Figure 4.3 Location and Nominal Direction of Rocket Engines
x

Top

1150

3.50 3.50

180 " 1
Rear Side

View 120 2 View

9.34m
6.68 > 5 CG

ep positive

6ey positive

z z

Figure 4.4 Angular Direction of Thrust Axis

Y

x
0 +6S+eyt

thrust axis
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The moments induced by the tth rocket engine are given by the cross product of the position

vector (4.14) with the thrust vector which results in

(roll) Lt = Z - (zcg+Z) Yt

(pitch) Mt= (zcg+z )Xt- (x cg+xt)Zt (4.16)

(yaw) N = (Xcg+) Yt - YtXt

Substituting (4.15) into (4.16) expresses the moments as a linear function of the deflection

angles.

Having derived the general equations for modeling the rocket engines, the next step

is to derive the equations corresponding to the term B'6 in (4.9).

The elements of the control vector are

61 = 6ey

8 =8' 1 +ey)2 ey2 = 2(ey3+ey2)

3 ep3 2= ep3- 8ep2)

=6' = (6 +6 (4.17)
4 ey4 2 ey5 ey4 (4,17)

5 = ep 5 = (6ep 5  ep4

66 = 6

67 = 6r

where the deflection angles are defined as follows:

6eyl = yaw angle of top orbiter engine

6ey 2 = yaw angle of right orbiter engine

6 = pitch angle of right orbiter engine
ep2

6ey 3 = yaw angle of left orbiter engine
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6ep 3 = pitch angle of left orbiter engine

6ey 4 = yaw angle of right SRM

6ep 4 = pitch angle of right SRM

6ey 5 = yaw angle of left SRM
ey5

6ep5 = pitch angle of left SRM

The elements of the constant 7x 3 matrix

bll b12 b13 b14 b15 b16 b17

S= b21 b22 b23 b24 b25 b26 b27 (4.18)

b31 b32 b33 b34 b35 b36 b37

are computed from the following set of formulas:

bl I = F cos l8 °

b21 = - F(zl -zcg) cos 180

b31= F(x1 -xcg) cos 18

b12 = 2F cos 120 cos3.5'

b22 = - 2F(z - zcg) cos 120 cos 3.5*

b32 = 2F [(x 2 - Xcg)COS 3.5 - Y2 sin 3.5* ]cos 120

b13 = 2F sin 120 c os 3.50

b23 = 2F C y2 c o s 12 0 - ( z 2 - z c g ) si n 120 sin3.50

b33 = 2F CY2 cos 3.50 + ( x
2 - xcg) sin 3.5* ] s in 12 0

(4.19)
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b14 = 2FSRMcos 15*

b, = 2F (z - z cos 150
14 SRM 4 g

b34= 2F sRMC(x4-xcg ) cos 150 -y sin 150
34 SRM 4 cg 4

b15 = 0

b25 = 2FSRMY4

b35 = 0

b16 = qSCy6

b26 = qSbref(C. )cga

36 = qSbre(Cn )cg

(4. 19 continued)

b7 = qSC.
r

b27 = qSbref(C r )cg

b = qSb (C )

(C a) C + C (Z -Zm )/br
6 cg I 6a y8 cg .mrp ref

(Cn6 )cg Cn6 Cy 8a (cg -mrp /bref

(4.20)
(C ) C +C (z -z /b

C cg '6 y6 I cg mrp ref

(Cnr) = Cn - C (xc -X p ) / bre f

The formulas in (4.19) are grouped by column. The tth column of the ' matrix in (4.9)

defines the values of Y , L., N corresponding to 6 . The formulas for the first five

columns are derived from (4.14) - (4.17) . The last two columns corresponding to the aileron
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and rudder, respectively, are computed using the standard formulas for aerodynamic control

surfaces. The data for the stability derivatives received from MSFC were with respect to the

moment reference point located at xmr p ,mrp y mrp where ymrp = 0 . The translation

of data from the moment reference point to the center of gravity is given by (4.20).

The force and moments in (4.9) due to the bias disturbances is modeled by the term

Zz. The elements of the vector z or bias inputs are

z I = 0 = side slip angle due to a steady side wind

z = T = roll bias torque due to SRM misalignment

Ybz3  T b = yaw bias torque due to SRM misalignment

The constant 3x 3 matrix " has the form

C1 1  0 0

S C2 1  1 0 (4.21)

C31 0 1

where the elements in the first column are computed from

C1 1 = qSC*

C2 1 = qSb(C* )
21 0 Lcg

C = qSb(C* )g31 ng cg

C* = C* +C*(z -z )/b
( 'cg 0C yo cg mrp

(4.22)

(C*)c = C* - C*(x -Xmrd/b
ncg ng y cg mrd

C* =C + AC
yo y8 Y

C* = C + AC

g ng C ng)AF T +(ACnFORWARD
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The last three equations in (4. 22)account for the change in the stability derivatives due

to the addition of a pair of dorsal fins to the Space Shuttle configuration as indicated in

the sketch below.

forward dorsal fin - "aft dorsal fin

To summarize, the lateral dynamics of the space shuttle is governed by the vector

matrix equation (4. 10). The coefficient matrices A , B , C in (4.10) are computed using

(4.8), (4.9), (4.11) - (4.13), (4.18)- (4.22). The values of the parameters required by

these equations are given in Appendix B.
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4.2 TRIM PROBLEM AND SOLUTION

When bias disturbances generate forces and moments that cause the vehicle to deviate

from the nominal tajectory, the rocket and aerodynamic controls must be deflected in such

a way as to counterbalance these forces and moments. For the lateral trim problem of the space

shuttle, the bias disturbances are due primarily to steady side winds and SRM misalignments.

The state vector x in (4.7) defines the deviation of the vehicle from the nominal trajectory

in the lateral-direction. Hence, the trim condition is to maintain x = 0 . On substituting

x = 0 into (4.10) one finds that the trim solution A must satisfy the matrix linear equation

0 = B6 + Cz (4.23)

For a given value of the bias vector z , (4.23) represents six equations in seven unknowns.

However, the equations are not all linearly independent. From (4.12) the.first three equations

are identically zero independent of 6 and the last three equations have the form

0 = A-B6 + AlCz (4.24)

where A is the diagonal matrix defined by (4.8). Premultiply (4.24) by A gives

0 = 6 + i'z (4.25)

which is equivalent to setting Y = L = N = 0 in (4.9). In other words, (4.25) states that

the trim control must provide zero net side force, rolling moment, and yawing moment in the

presence of a steady side wind and SRM misalignments. Replacing (4.23) by (4.25) has reduced

the number of trim equations from six to three. In terms of the notation introduced in Section

2.1, the dimensions of the trim problem are

m = 7 : number of controls

n = 6 : number of state variables

n = 3 : number of linearly independent trim equations

In order to determine the optimum trim solution, a performance criterion of the following

form was selected:
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= 7 W2 (8/ max)2

t=l

+ W2 (1 - cos 6,) (4.26)

=! 2 t

7i7
+ 7W 2 (q S C 6)2

6 2

where

8 tmax Maximum deflection angle allowed for the ,th control because of physical

limitations or excessive hinge moments.

q Dynamic pressure

S, Reference area corresponding to the drag induced by the tth control

CD "  Coefficient of drag corresponding to the ,th control.

The numerical values of the above parameters is given in Appendix B.

The seven components of the vector 6 of control deflections are defined according

to (4.17). The first term in (4.26) penalizes the movement of the actuators for trim in order

to leave maximum flexibility for dynamic response. The second term in (4.26) penalizes the

thrust loss(gain) caused by gimballing the rocket engines away from their nominal position.

The third term in (4.26) penalizes the thrust loss due to drag caused by deflecting aerodynamic

surfaces.

Substituting the approximation

1 - cos 6t "~,6
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into (4.26), the performance criterion can be written as the quadratic form

r() = 6' R 6 (4.27)

where R is a diagonal matrix whose elements are given by

R = W2  82 + 2  t= 1, .. ,5 (4.28)
tt It tmax 2(

R = W2 /62 + W2 (q SC )2 t=6, 7 (4.29)
t it max 2t D7

The fourteen (relative) weighting factors W and W2t are selected by the user to achieve
i 2,

the best performance within the restriction imposed by the problem. This best performance is

a judgement evaluation unless additional criteria are used.

The lateral trim deflection angles are the solution to the optimization problem defined

by (4.25) and (4.27). The objective is to solve the trim problem for the maximum expected

values of sideslip angle and for different combinations of roll and yaw misalignment torques

that encompass the worse case situation. The sideslip angle is computed from the mean side

wind velocity and the vehicle velocity according to

= sin- (Vy/)

The values of V and V for each of the twelve trajectory points are listed in Appendix B
y

and result in the values of sideslip angle listed in Table 4.2. Plotting the values of B

as a function of flight time yields the sideslip profile shown in Figure 4.5. Eight different

combinations of yaw and roll bias torques due to SRM misalignments were provided by MSFC

for studying the trim problem and these are listed in Table 4.3.

A computer program entitled TRIMS for computing lateral trim of the Space Shuttle was

developed. The TRIMS program solves the trim problem given by (4.25) and (4.27) using the

numerical methods described in Section 3.1. The program user can select either the steepest

descent method or the Newton-Raphson method at execution time. Although the trim problem

given by (4.25) and (4.26) is linear, these numerical methods have the capability to solve the

nonlinear problem. The TRIMS program is coded to facilitate changes in the trim problem

including the replacement of the linear trim problem by a nonlinear trim problem.
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Table 4.2 Sideslip Angle for Different Flight Times

flight
time

(sec) (rod) (deg)

25 .02096 1.201

40 .05996 3.436

50 .07887 4.519

60 .09942 5.696

65 .10642 6.097

70 .11124 6.374

75 .11635 6.667

80 .11404 6.534

90 .06169 3.535

100 0 0

110 0 0

140 0 0

Table 4.3 Bias Torques Caused by SRM Misalignment

CASE YAW BIAS ROLL BIAS
(New. -m)x 106 (New. -m)x 106

1 3.02 0.

2 2.50 0.70

3 0. 0.87

4 -2.50 0.70

5 -3.07 0.

6 -2.50 -0.70

7 0. -0.87

8 2.50 -0.70
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Figure 4.5 Sideslip Angle vs Flight Time Due to Mean Wind Disturbance

7

6-

5

4-

2-

25 35 45 55 65 75 85 95 105

Flight Time (sec)

The formulas developed in the previous section for computing the matrix elements in

(4.25) are coded into the TRIMS program. The numerical data required by these formulas

and tabulated in Appendix B is also stored internally in the program. Similarly the formulas

(4.28) and (4.29) used to compute the performance criterion (4.27) are coded into the

program together with the required numerical data. Only those input parameters with values

that are likely to vary from run to run are entered as input data at execution time. These are

the fourteen weighting factors w 1i and w2p in the performance criterion and the values of

the roll and yaw bias torques, z2 and z3 , respectively. A more detailed description of

the TRIMS program including flowcharts, listing, instructions showing how to use the program

is given in Appendix C.
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The trim angles for the eight different combinations of yaw and roll SRM bias torques in

Table 4.3 were computed in a single run of the TRIMS program. Each case entailed computing

the trim angles for the twelve trajectory points or flight times which totals to 96 trim solutions.

The total cpu time was 5.29 seconds on the IBM 370/165 computer which averages to 0.055

second per trim solution. For this run the second order gradient method and the weighting

factors in the performance criterion were chosen to-be

3t000 for of 6

14000 for t = 6

w2 t =0 =1, .... 7

The lateral trim solutions for the eight cases in Table 4.3 are shown in Figure 4.6

where the trim angles are in degrees. The trim angles 64 and 85 for the SRM engines are

always zero since in the current TRIMS program the SRM engines are not gimballed. However,

the provision for gimballing the SRM engines has been included in the development of the

development of the TRIMS program.

For most of the trajectory points in Figure 4.6, especially those with high dynamic

pressure, some of the deflection angles exceed the allowable limits by an order of magnitude.

This indicates that the Space Shuttle configuration does not have sufficient control authority

to meet.the trim conditions Y= L = M = 0 when the SRM engines are not gimballed.

A check of the TRIMS program against a lateral trim solution computed at MSFC was

made. The MSFC solution is for the case of zero net rolling and yawing moments, but,

unlike in the TRIMS program the requirement of a zero net side force (i.e., Y = 0) is not

imposed. Also the MSFC solution does not consider the deflection of the aileron. A special

modification of the TRIMS program for including or disregarding the trim condition Y = 0

and/or the aileron deflection was made and is described in Appendix C. Although the actual

mrodification of the TRIMS program to eliminate the constraint Y = 0 is minor, it is based on

a novel procedure derived in Appendix D. A comparison of the trim solutions computed by each

program for (supposedly) the same trim problem showed that the deflection angles have about

the same magnitude but are not equal. A more detailed discussion of the comparison including

plots of the trim solutions is given in Appendix E.
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Figure 4.6 Lateral Trim of Space Shuttle

CASE I

SYSTEM DYNAMICS PAHAMETERS
----------- -------- YAW 81AS TONQUE = 3020000.0

HOLL BIAS TOROUt = 0.0

PERFORMANCE CRITERION PARAMLTERS
----- ---------------- 11 =3000.00 W21 = 0.0

812 =3000.00 W22 a 0.0
WEIGHTING w13 =3000.00 823 a 0.0
FACTORS 814 =3000.00 824 a 0.0

s15 =3000.00 8 25 a 0.0
W16 =4000.00 W26 = 0.0
W17 =3000.00 827 a 0.0

TRIM DEFLECTION ANGLES
---------------------- TRAJ. FLIUHT DELTA

PT. TIME (1) (2) (3) (4) (5) (6) (7)
*.. ... .. .. .. .. ... ........ ..... .... . ... .... ..... .

S 1 25.0 -11.59 4.08 -19.35 0.0 0.0 -7.55 13.03
S 2 40.0 14.77 4.99 16.13 0.0 0.0 4.28 -13.35
S 3 50.0 46.99 3.32 61.74 0.0 0.0 31.07 -24.96

4 60.0 100.03 -4.25 146.84 0.0 0.0 81.55 -39.35
5 65.0 126.39 -13.30 229.11 0.0 0.0 121.16 -43.78

S 6 70.0 95.0b 22.88 141.57 0.0 0.0 18.55 -68.60
7 75.0 129.30 8.95 239.63 0.0 0.0 20.78 -70.80
8 60.0 136.46 -2.99 314.14 0.0 0.0 35.18 -80.27
9 90.0 11.56 22.91 201.30 0.0 0.0 52.10 -67.49

* 10 100.0 5.74 -5.80 -37.39 0.0 0.0 -5.75 27.59
* 11 110.0 12.93 -9.93 -41.76 0.0 0.0 6.74 60.32

S 12 140.0 116.73 -57.42 -119.78 0.0 0.0 58.39 110.65

......................................................................................
TOP YAW PITCH YAW PITCH AILERON RUDDER

---- HURITER ---- ><--- SRM ---- ,

CASE 2

SYSTEM DYNAMICS PARAMETERS
-------------------------- YAW BIAS TONGUE a 2500000.0

ROLL.BIAS TORQUE = 700000.0

PERFORMANCE CRITEMION PARAMETERS
----- ------------------- 11 =3000.00 821 a 0.0

12 =3000.00 822 = 0.0
WEIGHTING :13 =3000.00 W23 = 0.0
FACTORS W14 x3000.0 w24 a 0.0

W15 =3000.00 W25 a 0.0
W16 =n4000.00 826 a 0.0
817 =3000.00 827 u 0.0

TRIM DEFLECTION ANGLES
------------ THAJ. FLIGHT DELTA

PT. TIME (1) (2) (3) (4) (5) (6) 47)

1 25.0 -11.49 5.19 -19.19 0.0 0.0 -5.80 8.18
2 40.0 14.29 5.93 15.09 0.0 0.0 4.79 -15.16
3 50.0 47.25 4.11 61.77 0.0 0.0 32.15 -26.64
4 60.0 100.54 -3.79 147.57 0.0 0.0 63.79 -40.56
5 65.0 128.98 -13.09 230.79 0.0 0.0 123.92 -*44.77
6 70.0 94.54 23.77 141.11 0.0 0.0 19.24 -69.80
7 75.0 . 128.96 9.73 240.02 0.0 0.0 21.24 -71.94
8 o0.0 13o.29 -2.36 315.70 0.0 0.0 35.80 -81.62
9 90.0 9.69 24.38 205.51 0.0 0.0 54.09 -70.14.

S 10 100.0 1.68 -3.15 -34.26 0.0 0.0 -4.23 21.97
S 11 110.0 7.48 -6.47 -31.58 0.0 0.0 6.d9 47.90
S 12 140.0 91.36 -44.12 -99.66 0.0 0.0 46.67 87.91

......................................................................
TOP YAW PITCH YAW PITCH AILERON RUDDER

8---- URdITER ---- >c--- bRM ---- >
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Figure 4.6 (Continued)

CASE 3

SYSTE DYNAMICS PAkAmETERS
---"""" ------------- YAW HIAS TORQUE 0.0

NULL 81AS TU~RUE 870000.0

PERFONMANCE CRITERION PANAMT.EHR
...------------------------- 411 =3000.00 W21 = 0.0

w41 =3000.00 W22 = 0.0
WEIGHTINL W13 -3000.00 423 a 0.0
FACIONS W14 =3000.00 W24 = 0.0

15b =3000.00 W25 . 0.0
16b =4000.00 426 • 0.0

W17 =3000.00 427 u 0.0

TRIM DEFLECTION ANGLES
. .- .A--------------- TRAJ. FLIGHT DELTA

PT. TI04E (1) (2) (3) (4 .(5) (6) (T)
.............................................................................*0

1 25.0 2.46 2.59 3.16 0.0 0.0 4.32" -10.51
2 40.0 2b.63 2.99 31.20 0.0 0.0 6.88 -22.68
3 50.0 60.27 0.63 81.35 0.0 0.0 39.90 *32.28
4 60.0 114.42 -8.03 169.95 0.0 0.0 93.27 -4b.32
5 65.0 142.74 -17.98 256.87 0.0 0.0 134.91 -48.87
6 70.0 103.77 21.98 156.45 0.0 0.0 20.14 -75.25 
7 7b.0 139.00 7.19 259.74 0.0 0.0 22.50 -76.72
8 80.0 14*.77 -5.50 340.59 0.0 0.0 38.18 -87.15
9 90.0 14.67 24.91 240.96 0.0 0.0 62.35 -80.79

* 10 100.0 -3.82 2.05 -4.11 0.0 0.0 0.66 -1.08
S I11 110.0 -4.01 2.18 -3.75 0.0 0.0 0.88 -2.53

* 12 140.0 -8.61 4.25 -0.63 0.0 0.0 -2.07 -4.59

-................ . ..................... o .. o ..........................

TOP YAW PITCH YAW PITCH AILEHON RUDDER
<---- ORBUITER ---- ><---- bn ---- >

CASE 4

SYSTEM DYNAMICS PARAMETERS
.------------------------- YAW BIAS TONQUE a -2500000.0

NOLL BIAS TUNGUE a 700000.0

PERFORMANCE CRITENION PARAMETERS
---------------------- *--------- W11 =3000.00 421 a 0.0

W12 -3000.00 v22 a 0.0
WEIGHTING W13 =3000.00 423 • 0.0
FACTUHS 414 =3000.00 424 - 0.0

15 =g3000.00 425 a 0.0
416 =4000.00 426 I 0.0
417 =3000.00 427 * 0.0

TRIM DEFLECTION ANOLES
-.- ....--------------- TRAJ. FLIGHT DELTA

PT. TIME (1) .(2) (3) (4) (5) 46) (7)

1 25.0 17.83 -0.8 27.80 0.0 0.0 14b6 -28.71
e 40.0 38.42 -0.75 49.56 0.0 0.0 8.92 -30.03
S 3 50.0 74.53 -3.62 102.99 0.0 0.0 47.92 -37.67
4 60.0 129.51 -12.95 194.34 0.0 0.0 102.62 -49.97
5 65.0 157.66 -23.50 284.87 0.0 0.0 145.67 -52.O90
6 70.0 114.23 19.56 173.65 0.0 0.0 20077 -80.67
7 75.0 150.29 3.94 281.35 0.0 0.0 .23.65 -81.44
8 80.0, 1lb.46 -9.28 367.3J 0.0 0.0 *0.49 -92.57
y 90.0 16.93 . 24.76 27u.03 0.0 0.0 70.48 -91.22

S 10 10u.0 -7.8d 6.45 27.65 0.0 0.0 5.29 -23.70
11 110.0 -13.93 9.97 31.55 0.0 0.0- -4.b8 -51.97
12 140.0 -10 .21 50.95 98.65 0.0 0.0 -50.00 9b.29

TuO YAW PITCH YAw PITCH AILERON RUDDER
--- 0oIlTEL ---- *)-*< hM ----
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Figue 4.6 (Continued)

CASE

SYSTEM DYNAICb PAa-'ETk,
------------------------- YAW mIAl TU(rUc = -307U000.U

WOLL HIAS TOH4rUE = 0.0

PERFORMANCE CRITERIUON PAHAMrEIIS
-------- wil =000.00. = 0.0

w12 =30U0.00 422 = 0.0
wEIGHIINU w13 =3000.00 *w3 = 0.0
FACTO, Wl =3000.00 .e4 = 0.0

w1 =3000.00 aw5 = 0.0
wl =4000.00 wd6 = 0.0
W17 =3000.00 wd7 = 0.0

TRIM DEFLECTION ANGLES
---------------------- TAJ. FLIGHT DELlA

PT. TI4E (1) (2) (3) (4) (5) (6) (7)

* I ab.0 e4.12 -3.2v 37.88 0.0 0.0 17.32 -31.90
2 40.0 44.17 -J.14 5d.11 0.0 0.0 9.31 -31.42
3 5O. 0 0.eI -b.10 111.94 0.0 0.0 50.27 -38.40
'4 00.0 13 .32 -15.4 203.8I 0.0 0.0 104.48 -50.61
S65.0u 163.33 -25.9 294.99 0.0 0.0 147.65 -53.68

. b 70.0 119.0J 17.75 181.20 0.0 0.0 20.41 -81.85

. 7 75.u . 1~.27 1.94 289.98 0.0 0.0 23.71 -82.37
8 bU.0 163.40 -11.42 377.0: 0.0 0.0 40.89 -93.01
9 90.0 20.37 23.38 2089.3 0.0 0.0 72.07 -93.16
10 100.0 -t.84 t.90 38.01 0.0 0.0 5.85 -2d.04
11 110.0 -13.14 10.09 42.45 0.0 0.0 -6.8b -61.32
S I 140.0 -120.70 bm.37 121.7b 0.0 0.0 -59.36 -112.48

TOP YAW PITCH YAW PITCH AILERON RUODER
<---- UHbITir ---- ><---- tRM ---- >

CASE 6

SYSTEM DYNAMICS PARA.ETERS
-----------------........ - YAW lAs TOrwUE = -2500000.0

HOLL blAS TUJUE = -700000.0

PERFORMANCE CRITERION PARAMETE5s
-------------------------------- ........11 =3000.00 

21 = 0.0
412 =3000.00 422 = 0.0

WEIGlHING w13 =3000.00 w23 = 0.0
FACTORS 414 =3000.00 24 = 0.0

W15 =30U0.00 W25 = 0.0
W16 =4000.00 we6 = 0.0
w17 =3000.00 .27 = 0.0

TRIM OEFLECTION ANGLES
---------------------.......... TAJ L T DELTA

PT. TIME (1) (2) (3) (4) (5) (6) (7)
.................................. ......................................................

1 25.0 23.1 -4.34 37.25 0.0 0.0 15.35 -26.68
e 40.0 +. -*.01 1 U.0 0.0 8.75 -29.433 bU.0 7#.b7 -6.82 111.49 0.0 0.0 49.02 -36.61
4 00.U 134.52 -15.77 202.62 0.0 0.0 102.05 -49v.b! b.U 104.4b -26.09 292.77 0.0 0.0 14.bd -52.61
6 70.0 11.33 I.90 li..,34 0.0 0.0 19.70 -80.5.
7 75.0 15t.)0 I22 id).1 0.0 0.0 23.22 -41.13
4 miO.O 14.4e -11.97 374.,,7 0.0 0.0 40.2 -li.14S 90.0 ee.1i 21.91 H84.70 0.0 0.0 69.9? -9U.e9
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Figure 4.6 (Continued)

CASE 7
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4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE

The vector-matrix equations defining the linear stochastic optimum control problem

and its solution are given in Section 3.4. These equatiohs entail computation of the matrices

F , M , K , P from the matrices A, B , C , E , G , H , V , W , Q , R defining the optimum

control problem. In order to simplify the feedback design, the matrices F , M , K , P are

partitioned as follows:

S 2M 6
F= F FJ M= J 3

6 3 2 .

6 3

K K x 6 P P 1 P 2- 6
K= P=

K P P 3

A block diagram )f the complete closed loop system in terms of the matrices listed above is

given in Figure 4.7. The lower half of the block diagram depicts the optimum feedback

control system.

For the lateral control of the Space Shuttle the state vector x , control vector u,

bias vector z , and observation vector y are defined to be

y side displacement 61 top

cp roll angle 62 yaw orbiter

x = yaw angle

v side velocity 63 pitch

p roll rate u 64 yaw SRM

r yaw rate
85 pitch

66 aileron

67 rudder

/ side slip

z = T yaw bias torque

y--
T roll bias torque

rb p
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Figure 4.7 Block Diagram of Closed Loop System with Optimum Feedback Control
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The vehicle dynamics used in the optimum control design are for the first trajectory point

(flight time = 25 sec). The elements of the matrices A , B , C were computed from the data

in Appendix B using the equations in Section 4. 1. It should be noted that the results in.this

section are for the case of no dorsal fins and the results in Section 4.2 include the effect of

the dorsal fins. For the first trajectory point the difference in the two cases is minor. Since

y is assumed to be a subvector of x , the elements of the observation matrix H are either

0 or 1 where a value of 1 in column t indicates that x is one of the measured quantities.

The relative weighting matrices Q and R in the performance criterion (3.82) are selected by

the control designer with the goal of optimizing the closed loop performance. The particular

approach adopted for this problem is to select Q and R of the form

-2 -2 .- 2 -2 -2 -2
Q=Diag y ,40 ,4 ,v ,p ,r 3

max max ' max' max max max

-2 -2
R = Dig u 1 max  U7max

The parameter a in the performance criterion (3.82) is varied until an acceptable "trade

off" is achieved between the closed loop performance and the level of control effort. For

this example a = 1 and the maximum values of the state variables and control deflections

used in the performance criterion are listed below.

Ymax = 10m

Pmax = 0.01rad

u . = 0.2rad

(max = 0.01 rad Jmax

v = 5m/sec j=1, . 7
max

pmax = 0. 1 rad/sec

rmax = 0.1 rad/sec

The matrix V defining the state excitation noise spectral density is assumed to be diagonal

with
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V =0 t = 1,2,3

V44 = (2v ax)

V5 5 =(0.1 Pax)

V66= (0. r ax)266 max

For this example the matrices G and E defining the noise model associated with the bias

inputs are

G = Diag C0.1 , 0.1 x 1014, 0.1 x 1014

E = Diag - 0.01 , -0.01 , 0.01]

The tth diagonal element of G is roughly equal to the maximum value of zt squared. The

negative diagonal elements in E provide a small amount of damping in the noise model which

is required in order that the covariance matrix P3 corresponding to the bias vector z does

not become infinite. The observation noise spectral density matrix is assumed to have the' form

= 2 2 2 2 2
W = Diag r , O', , a"p,a Ory 0 pr

The standard deviation a defines the level of noise associated with the measurement of y
Y

and the other standard deviations are similarly defined. By varying the standard deviations of

the sensor noise as part of the design procedure,different Kalman filter designs are obtained.

For the final Kalman filter design in this example

Oy = 0.1 Yraxay Y 1 max

a = 0.01 p
p max

a = 0.01 r
r max

The numerical values of these matrices defining the optimum control problem are given in

Figure 4.8 (a).
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A computer program entitled Linear Systems Design (LSD) was used to design the

optimum feedback system. The LSD program solves the equations for the optimum control

solution given in Section 3.4.1. The resulting matrices M 1 , M2 , Fx , Fz used to design

the deterministic quadratic optimum control are shown in Figure 4.8'b). Similarly, the

resulting matrices P1 , P2 , P3 , Kx , Kz used to design the Kalman filter are shown in

Figure 4.8(c).

The performance achieved by the feedback control system was simulated for the

different designs. The control deflections as a function of time were plotted and are shown

Figures 4. 9 and 4.10. Note the SRM deflections 84 and 65 are not plotted since in the

current investigatio' it is assumed that the SRM are not gimballed. The dynamic response in

Figures 4. 9 and 4.10 is for the case where the vehicle starts from the trim condition for

S= 1.200

T = 3.02 x 106 N-m
rb

T = 0. N-m
Yb

to which correspond the deflection angles

61 = - 6.630

62 = 7.350

63 = - 11.270

86 = 2.650

87 = - 12.110

The initial trim solution shown above is indicated by the straight lines in Figures 4.9

and 4. 10. The effect of a 20 step change in the sideslip angle causing an increase from

0 = 1.200 to f = 3.200 was simulated. The transient response curves show the performance

of the control system in achieving the new trim solution. The curves in Figure 4.9 (a) are

for the case of complete state feedback which assumes that the state of the process can be

estimated perfectly (i.e., H = I, V =W = 0 , ^ = x). This is not realistic but provides an

upper bound on the performance as the estimation capability of the Kalman filter improves.
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Observe in this case that the control deflections change discontinuaously due to a step change

in 3 . This does not occur when the Kalman filter is included. The curves for the remaining

cases show the performance when different Kalman filter designs are used. The different

designs correspond to different values of the W matrix as shown below

22222
W = Diage , , a, , aap 'r

Figure y a a a a r

4.10b 10 .01 .01 .1 .1

4.10c 10 .01 .01 .01 .01

4.11 1 .001 .001 .001 .001

The value of W in Figure 4.8 (a) and the matrices in Figure 4.8 (c) correspond to the Kalman

filter design used in Figure 4. 9

In Section 3.4. 1 a convergence property relating the optimum control approach and the

trim control approach is given by (3.117). A demonstration of this property for the lateral

control problem of the Space Shuttle is given below. Trajectory point number 1 occurring at

25 seconds after launch is shown in which the roll and yaw bias torques due to misalignment

of the solid rocket motors are assumed to be

roll bias torque = 3.02 x 106  (N-m)

yaw bias torque = 0

The control vectors ux(m) , uz( ) , and u( m ) obtained by the optimum control approach

have been computed in this case for three different values of a (1., 0.1, 0.01) and are listed in

Table 4.4. The computations were performed according to (3.94), (3.95), (3.98)-(3.102) where

the control weighting matrix R was chosen to be and where I denotes the identity matrix.

R = 251

The trim solution or limiting solution for ao = 0 was computed using the TRIMS program and is

also listed in Table 4.4. An examination of Table 4.4 illustrates that the steady state control

level u( oo) for the optimum control solution approaches the trim solution as a approaches zero.
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Figure 4.8 Numerical Value of Matrices Used in Optimum Control Design

(a) Definition of Linear Stochastic Optimum Control Problem

0. 0. 0. .10io00E+0 0. 0.
0. .16920E+01 0. 0. .IO0000E

+ 
O -. 83330E+02

A 0. .16920E+01 0* 0. 0. -. 83330E+02
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Figure 4.8 Numerical Value of Matrices Used in Optimum Control Design, (Continued)

(b) Deterministic Quadratic Optimum Control Design (Complete State Feedback)
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Figure 4.9 Dynamic Response for a 20 Step in Sideslip Angle
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Figure 4.9, continued - 2-
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Figure 4.9, continued - 3 -
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Figure 4.9, continued - 4 -
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Figure 4.9, continued - 5 -
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Figure 4. 10 Dynamic Response of Optimum Control with Improved Kalman

Filter for a 20 Step in Sideslip Angle
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Figure 4. 10, continued - 2 -
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Figure 4. 10, continued - 3 -
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Table 4.6 Convergence of Optimum Steady State Control Level to

Trim Control as Control Weighting Decreases

(trim solution)

a = 1  a= 0.1 = 0.01 = 0

- 0.85 - 0.20 - 0.02 0

- 0.56 - 0.13 - 0.01 0

- 0.61 - 0.14 - 0.01 0

Ux() 0 0 - 0 - 0

0 0 0 0

0.22 0.05 0.01 0

- 0.11 - 0.25 - 0.03 0

-5.78 -7.17 -7.36 -7.39

7.90 7.46 7.35 -7.34

- 10.64 - 12.24 - 12.39 - 12.42

U ( o) = 0 0 - 0 - 0

0 0 0 0

2.43 2.03 2.06 2.06

- 11.00 - 10.76 - 10.96 - 10.96

- 6.63 - 7.37 - 7.38 - 7.39

7.35 7.33 7.33 7.34

- 11.27 - 12.38 - 12.40 - 12.42

u() 0 0 0

0 0 0 0

2.65 2.08 2.07 2..06

- 12.11 - 11.01 - 10.99 - 10.96
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5. CONCLUSIONS AND FUTURE WORK

Solutions to the trim problem can be efficiently calculated by the TRIMS program

using the numerical methods described in Section' 3. 1. The results of this investigation

indicate that numerical solution by the Newton-Raphson method is preferable to the

steepest descent method because it yields faster convergence and does not require the

user to specify an iteration step size Cr . If the initial guess of the solution used to start

the Newton-Raphson method is not in the region of convergence then the method may not

converge or may converge to the wrong solution. In this case the steepest descent method

should be used for the first few iterations to generate a good starting solution to the

Newton-Raphson method. This hybrid method could be implemented in the TRIMS program

with minor modifications. However, it appears that for most practical trim problems an

initial guess of 6 = 0 is always in the region of convergence.

For the linear trim problem, a diagonal weighting matrix R in the quadratic per-

formance criterion is sufficient in finding the "best" trim solution with respect to the

limits on the deflection angles. Introducing nonzero values for the off-diagonal; elements

of R complicates -the selection of the performance criterion and does not lead to a better

trim solution than could be obtained by use of a diagonal matrix. Starting from the trim

solution for a given diagonal R matrix, consider the problem of searching for a more

desirable trim solution.: The penalty function method for varying the diagonal elements

of R is a viable approach for improving the trim solution that is easy to use. The

penalty function method would be considerably facilitated if the computer computation

of the trim solution is performance in a conversational mode of operation rather than a

batch mode. In the former case, the user can examine the trim solution and then immediately

try a new R matrix. The process can be repeated in a single sitting as many times as is

necessary.

The lateral trim solution in Figure 4.6 indicates that the Space Shuttle configuration

does not have sufficient control authority.when the SRM engines are not gimballed. (The

improvement in the trim solution obtained bygimballing the SRM engines is an area for future

study which can be performed by the TRIMS program with minor modifications to the block

data subroutine.) If the constraint of zero net side force (i.e., Y = 0) is eliminated and

the vehicle is only trimmed in roll and yaw, the maximum control deflections decrease by
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roughly an order-of-magnitude. In this case the trim solution is within the deflection

limits. Hence, the control requirements increase significantly with the addition of the trim

requirement Y = 0 . Maintaining Y = 0 is not as critical as zero net roll and yaw torques

because angular errors are multiplied by the vehicle velocity in computing the displacement

from the nominal trajectory. This suggests removing the trim condition Y = 0 entirely or

replacing it by I Y I <E . The value of E depends on how much side displacement error

ia acceptable. By varying the weighting matrix R in the performance criterion with flight

time rather than holding it constant, significant improvement in the trim solution might be

achieved. The problem of realizing a trim solution for a time-varying R matrix must also

be considered.

Only the steady-state performance of the control system for bias inputs is considered

in the trim calculation. The dynamic or transient response of the controls for fluctuating

inputs must also be considered in the overall system design. For the nonlinear trim problem,

the index of controllability defined in Section 3.3.2 is a quantitative measure for selecting

the trim solution that results in the most controllable system with respect to the dynamic

response problem. An integral E proportional to the control energy is defined in Section

3.3.1 and is computed using the controllability Grammian W . Another measure for

selecting the trim solution is given by the value of E . If the trim problem is linear, then

the value of the controllability index or E does not vary with the trim solution.

The basic question in studying the dynamic response problem is: 'What is the maximum

deflection of each control for the possible fluctations in the disturbance inputs?" One

possible approach to the dynamic response problem is to examine the values of Et , where

E denotes the energy expended by the tth control to return the vehicle to trim. The values

E. can be readily computed from the controllability Grammain W . Although this approach

has potential in gaining insight into dynamic response problem, it possesses two major

limitations. First, there is no simple relationship between the energy Et and the maximum

value of the transient response curve showing the variation in the control deflection angle

with time. Second, the control signal corresponding to Et cannot be realized by a linear

feedback control system. The trim problem concerns only the static performance and can be

studied without considering the detailed design of the feedback control system. The dynamic

response problem, however, concerns the closed-loop transient response and is strongly

dependent on the design of the feedback control system.
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The most realistic method and possibly the only practical method for studying the

dynamic response problem is to design the control system and simulate the closed-loop

performance. The application of optimum control theory provides a method for the design of a

linear feedback control system that can solve both the trim problem and the dynamic response

problem. The correlation between the trim solution and the optimum control solution derived

in Section 3.4. 1 indicates how the solution to the trim problem can be used to select the

proper control weighting R in performance criterion of the optimum control approach.

This saves design time since the trim problem is easier to solve. A computer program

entitled Linear System Design (LSD) was developed at Singer-Kearfott that is capable of

computing the optimum feedback system and simulating the closed-loop performance. Since

LSD is a conversational program with an automated plotting capability, many different

designs can be studied efficiently. An example illustrating the use of LSD to design an

optimum feedback system for the lateral control of the Space Shuttle during ascent is

described in Section 4.3. It is recommended a more extensive design effort be pursued

using the optimum control approach.
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APPENDIX A VECTOR NOTATION AND DIFFERENTIATION

In this appendix the notation used for handling differentiation with respect to vector

quantities is reviewed for reference purposes. This notation is useful in describing the solution

to the trim control problem.

Let x and y denote an n dimensional and an m dimensional (column) vector,

respectively. Further, let a denote a scalar function of x and y and let f denote a

vector function of x and y where the dimension of f is p

x$ yt

x = . v = . f = f(x,y) a = Cx,y)

xn Lym

Differentiation of a vector by a scalar results in a (column) vector defined by

dxt/ddt

i = dx/dt

dx /dt
n

On the other hand, differentiation of a scalar by a vector results. in a row vector defined

by

ba/x = bca/x, boea/x 2 , . . . , a/xn

The second partial of the scalar a with respect to x and y

2a /bx by = b/by( at/bx)'

is an n by m matrix whose tWjh element is defined by

( 2o /xy) = 2

Differentiation of the vector function f with respect to the vector x is a p by n

matrix whose tjth element is defined by

( f/x)= aft/ x102
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Consider the scalar formed by the inner product of f and a constant vector ) of

dimension p The second partial of this scalar with respect to x and y

2(X'f)/ax y = X(af/ax 6y)

is an n by m matrix whose tjth element is given by

x y tj A=.k

The quantity of af/bx 2y is a tensor whose ktjth element is defined by

( af/ax by)k, k/bx yt
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APPENDIX B PARAMETERS OF SPACE SHUTTLE DYNAMICS

The equations defining the lateral-direction dynamics of the Space Shuttle during

ascent through the atmosphere were derived in Section 4. 1. The parameters required to

compute the matrix coefficients in the linear equations of motion (4. 10) are given in this

appendix. The list of parameters appearing below indicates the parameter symbol, value,

units, and a brief description. The data is given for twelve different points or flight times

along the ascent trajectory and was furnished by Dr. S. Winder of MSFC.

In the column labeled VALUE, there appears either the numerical value or the word

"table" or is left blank. The word "table" denotes that the numerical value varies with

flight time and the twelve different values are listed in the tables at the end of this appendix.

A blank denotes that the value of the parameter has not been specified. The unspecified

parameters are the location and thrust of the SRM engines and the stability derivative C

Most likely C is small and is assumed to be zero in this investigation. It is

furtherassumed that the SRM engines are not gimballed but the provision for including

the SRM engine deflections is incorporated into the equations.

The stability derivatives Cp , Cnp , Cy r , C r Cnr were not included in the data

furnished by MSFC. Their values listed below are rough estimates based on the vehicle

configuration. These stability derivatives are not used in computing the trim solution but

are required for the study of dynamic response.
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LATERAL TRIM PARAMETERS

SYMBOL VALUE UNITS DESCRIPTION

x 0 m

yl 0 m x, y, z positions of (top, orbiter) engine 1

z1  0 m

x2  0 m

Y2 1.346 m x, y, z positions of (right orbiter) engine 2

z2 -6.68 m

x3  0 m

Y3 1.346 m x, y, z positions of (left orbiter) engine 3

z3  6.68

x4  m

Y4 m x, y, z, positions of (right SRM) engine 4

z4  m

x5  m

YS m x, y, z position of (left SRM) engine 5

z5  m

x table m
cg

cg

zcg table m

x 21.6 m
mrp

Ymrp 0 m x, y, z position of moment reference point

z - 1.47 m
mrp
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q table new./m 2  dynamic pressure

2
S 317.73 m reference area

b 28.322 m reference length

V table m/sec velocity of the vehicle relative to the air

V table m/sec side component of V (side wind velocity)
y

F table New. thrust per orbiter engine

FSRM New. thrust per SRM engine
C table - stability derivative

C table - stability derivative

C table - stability derivative

AC table - change in C due to dorsal fins

AC table - change in C due to dorsal fins

(ACn AFT table - change in Cno due to aft dorsal fin

(ACn ~FORWARD table change in Cno due to forward dorsal fin

C stability derivative
y6a

C table stability derivative

C table stability derivativensa

C table stability derivative

C table - stability derivative

C table - stability derivative
n6r

C p -. 01 - stability derivative

C - 0.03 - stability derivative
np

C 0. - stability derivative
yr
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C 0.022 stability derivative

C -0.11 stability derivative
nr

c 20. m length of mean aerodynamic cord

m table Kg vehicle mass

I table Kg-m 2  vehicle moment of inertia about x axis

I table Kg-m 2  vehicle moment of inertia about y axis
y

I table Kg-m 2  vehicle moment of inertia about z axis
z

g table m/sec2  acceleration of gravity

cos 8 table - cosine of nominal pitch angle
o

sin 6 table - sine of nominal pitch angle
o

Q table rad/sec nominal pitch rate
o

U table m/sec nominal velocity along x axis

W table m/sec nominal velocity along z axis
0

tmax 30 deg maximum allowable rocket engine deflection (t=1,...,5)

table deg maximum allowable aileron deflection
6max

'7max table deg maximum allowable rudder deflection

86 G m2  reference area for drag induced by aileron control

67 0 m2 reference area for drag induced by rudder control

CD6 0 drag coefficient for aileron control

CD 7  0 drag coefficient for rudder control

C - 0.1 stability derivative

C - 0.03 - stability derivative
np

C 0.0 - stability derivative
yr

C 0.022 - stability derivative

C - 0.11 stability derivative
nr
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DATA: Stability Derivatives

(all data/radian)

flight C C C C C n8

ti me Y6a 6a 6ar 6r 6r Cy Cn

(sec)

25 .0 - .0430 .0458 .504 .273 - .510 - 1.66 - .283 .302

40 .0 - .0458 .0444 .408 .265 - .489 - 1.68 - .285 .315

50 .0 - .0487 .0430 .462 .259 - .473 - 1.70 - .286 .325

60 .0 - .0544 .0358 .394 .215 - .388 - 1.83 - .291 .404

65 .0 - .0630 .0344 .319 .181 - .310 - 1.99 - .298 .468

70 .0 - .0630 .0301 .300 .173 - .345 -2.05 - .326 .460

75 .0 - .0544 .0258 .292 .206 - .340 - 1.97 - .384 .344

80 .0 - .0458 .0244 .217 .186 - .254 - 1.92 - .356 .266

90 .0 - .0286 .0172 .132 .105 - .137 - 1.93 - .299 .238

100 .0 - .0215 .00286 .0961 .055 - .105 -2.03 - .246 .269

110 .0 - .0158 - .00286 .0749 .0406 - .077 - 1.98 - .196 .207

140 .0 - .00859 - .0114 .0573 .0286 - .061 - 1.60 - .122 - .0284



DATA: Vehicle Parameters

flight m I I I x z F
time (Kg) 2 cg cg
(sec) (Kg-m 2 )  (Kg-m ) (Kg-m 2 ) (m) (m) (New.)
(sec)

25 .218E+7 .953E+8 .526E+9 .591E+9 23.345 - 1.58 1.650E+6

40 .201E+7 .856E+8 .490E+9 .547E+9 23.42 - 1.5847 1.760E-6

50 .190E+7 .794E+8 .468E+9 .519E+9 23.47 -1.5914 1.825E46

60 .179E+7 .733E+8 .445E+9 .491E+9 23.52 - 1.5953 1.885E.46

65 .174E+7 .702E+8 .434E+9 .478E+9 23.545 -1.5979 1.920E-+6

70 .169E+7 .671EE+8 .423E+9 .464E+9 23.57 - 1.60 1.940E-.6

75 .160E+7 .629E+8 .383E+9 .420E+9 24.13 - 1.4626 1.970E-+6

0 80 .154E+7 .606E+8 .372E+9 .405E+9 24.18 - 1.455 1.980E-+6

90 .144E+7 .559E-+8 .348E+9 .375E+9 24.33 -1.440 2.025E-6

100 .133E+7 .512E+8 .326E+9 .346E+9 24.535 - 1.4327 2.040E-16

110 .122E+7 .466E+8 .303E+9 .317E+9 24.74 - 1.4255 2.060E-+6

140 .914E+6 .329E-8 .234E+9 .228E-+9 25.62 - 1.400 2.070E46



DATA: Trajectory Parameters

flight V V g cos 8 sin o Q U W q

time (m/sec) 2 2

(sec) (m/sec) (m/sec 2 )  (rad/sec) (m/sec) ( m/sec) (New/m2 )

25 95.4 2.0 9.8 - .012 1.0 - .203E-1 95.4 .279E+0 .482E+4

40 150. 9.0 9.8 .050 .999 - .512E-2 149. .149E+3 .987E+4

50 190. 15.0 9.79 .125 .992 .450E-2 186. .186E+3 .134E+5

60 241. 24.0 9.78 .222 .975 .112E-2 232. .232E+3 .174E+5

65 272. 29.0 9.78 .274 .962 - .158E-1 257. .257E+3 .194E+5

70 305. 34.0 9.78 .329 .944 .687E-1 283. .283E+3 .212E+5

75 343. 40.0 9.77 .384 .923 - .103E-FO 310. .310E+3 .226E+5

80 385. 44.0 9.77 .449 .893 .412E-1 337. .337E+3 .233E+5

90 486. 30.0 9.76 .566 .824 - .227E-2 392. .392E+3 .217E+5

100 612. 0.0 9.74 .664 .748 .301E-3 445. .445E+3 .165E+5

110 768. 0.0 9.73 .681 .732 - .851E-2 498. .498E+3 .117E+5

140 1520. 0.0 9.68 .874 .486 - .100E-2 673. .673E+3 .231E+4



DATA: Deflection Limits for Aerodynamic Surface Controls and Change in Stability Derivatives Due to Dorsal Fins

7 max 6 max (a ll data / degrees)

flight rudder hinge aileron hinge
time moment limit moment limit bCyB  6 C (ACnA)AFT (b Cn FORWARD

(sec) (deg) (deg)

25 nohinge limit nohingelimit - .011 .0031 .0064 - .004

40 42.0 71.8 - .012 .0032 .0067 - .0044

50 30.8 52.6 - .013 .0033 .0074 - .0048

60 23.5 40.0 - .015 .0036 .0085 - .0056

65 14.7 25.1 - .016 .0038 .0094 - .006

70 8.19 14.1 - .017 .0042 .0104 - .006

75 5.54 9.47 - .0165 .0042 .01 - .0058

80 5.23 8.91 - .014 .0035 .0088 - .005

90 6.27 10.69 - .0105 .0027 .0075 - .0044

100 10.23 17.5 - .008 .0017 .005 - .0028

110 19.67 33.64 - .006 .0014 .004 -. 0022

140 no hinge limit nohinge limit - .004 .001 .0028 - .0015

hard limits :30 40up-15down

* Hard deflection angle limit is used when less than

hinge moment limit.

forward dorsal aft dorsal

fin (400 ft2 ) fin (400 ft2)



APPENDIX C TRIMS COMPUTER PROGRAM

1. PROGRAM USAGE

Input

The input data to the TRIMS program consists of punched cards. The data deck

is divided into cases where for example each case computes the trim solution for

different values of roll bias torque. There are seven punched cards per case with the

first card containing the case title and the last card indicating whether another

case follows or whether this is the last case to be run. A description of the information

and format for punching these seven data cards per case is given in Table 1. A sample

of an input data deck for a single case run is shown in Figure 1.

Output

The computer printout from the TRIMS program is a single page per case. The

printout resulting from the data deck in Figure 1 is shown in Figure 2. The first part

of the printout lists the information contained on the data cards and used to compute

the trim solution. The trim solution is printed in a convenient tabular form with each

row listing the seven trim angles in degrees for a particular flight time. The number

of iterations required to compute the trim solution at each trajectory point is also

indicated.

Options

Special options have been added to the program since the original development

date of February, 1973. The purpose of these options is described in Table 2 including

the modifications to the input data required to exercise these options.
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TABLE 1: TRIMS PROGRAM INPUT DATA

CARD COLUMNS VARIABLE FORMAT DESCRIPTION

TITLE CARD

1 1-72 LINE 72A1 Descriptive case title.

CONTROL CARD

1 1-5 IGRAD I5 f = 1, use Ist order gradient method;
2, use 2nd order gradient method.

1 11-20 EPS E10.3 Upper bound used in the convergence criterion.

1 21-30 STEP E10.3 Step size used in the Ist order gradient method;
leave blank if 2nd order gradient method is used.

TRAJECTORY CARD

1 1-60 JPT 1215 If trajectory point no. k,k-, ... , 12, is to be
used then punch a 1 in column 5k ; other-
wise punch a 0 in column 5k.

CARD CONTAINING BIAS TORQUES

1 1-10 YBT E10.0 Yaw bias torque.

1 11-20 RBT E10.0 Roll bias torque.

CARDS CONTAINING WEIGHTING FACTORS

1 1-70 W1 7E10.0 Seven weighting factors in performance criterion
for adjusting maximum deflection angles.

2 1-70 W2 7E10.0 Seven weighting factor in performance criterion
for adjusting aerodynamic (drag) and thrust
losses due to trim.

CASE PARTITION CARD

S1 G5 1, another case follows
1 1 G G t5 2, last case.

FIGURE 1: EXAMPLE OF INPUT TO TRIMS COMPUTER PROGRAM

ST.irUY (F LATF . TP1,m Fn r CF SHIJTTLF N0 SRyP HIAS
2 0.0001 0.
1 1 1 1 1 1 1 1 1 1 1 1

0. o.

30nO. "3,0. 3000. 3000. 3000. 3000. 3000,
O. , 0. (. O. 0. 0.
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FIGURE 2: EXAMPLE OF OUTPUT FROM TRIMS COMPUTER PROGRAM

CASF I STUDY OF LATERAL TRIM FOR SPACE SHUTTLE NO 5RM BIAS

COMPUTATION CONTROL PAPAMETEPS
USE 2ND ORDER rRADIENT METHOD

UPPER BOUND USED IN THE CONVERGENCE CRITERION = 0.100E-03
TRPAJFCTORY POINTS

----------------- 1 1 1 1 1 1 1 1 1 1 1 1

SYSTEM DYNAMICS PAPAmETERS
YAW BIAS TOROUF = 0.0

ROLL RIAS TORQUE = 0.0

PERFORMANCE CRITERION PARAMETFPS
--------------------------------11 =3000.00 W21 = 0.0
WI? =3000.00 W22 = 0.0

wEIGHTING W13 =3000.00 W23 = 0.0
FACTOPS W14 =3.000.00 w24 = 0.0

W15 =3000.00 W25 = 0.0
W16 =3000.00 W26 = 0.0
w17 =3000.00 W27 = 0.0

TRIM DEFLECTION ANGLFS
---------------------- TAJ. FLI(HT DELTA NO. OF
PT. TIME (1) (2) (3) (4) (5) (6) (7) ITERATIONS

1 25.0 0.09 -0.00 0.13 0.0 0.0 0.10 -0.10 . 1
. 2 40.0 0.45 -0.04 0.59 0.0 0.0 0.14 -0.26 * 1

3 50.0 0.87 -0.13 1.24 0.0 0.0 0.81 -0.26 * 1
. 4 60.0 1.50 -0.31 2.40 0.0 0.0 1.43 -0.36 . 1
. 5 65.0 2.04 -0.49 3.50 0.0 0.0 1.88 -0.39 . 1
* 6 70.0 1.71 0.02 2.57 0.0 0.0 0.25 -0.88 * 1

7 75.0 2.26 -0.24 4.03 0.0 0.0 0.39 -0.89 . 1
. 8 80.0 2.42 -0.39 5.15 0.0 0.0 0.78 -1.03 * 1
, 9 90.0 0.54 0.12 3.48 0.0 0.0 1.31 -0.94 , 1
. 10 100.0 -0.00 -0.00 0.00 0.0 0.0 0.00 -0.00 . 1

11 110.0 0.00 0.00 -0.00 0.0 0.0 0.00 0.00 . 0
12 140.0 0.00 0.00 -0.00 0.0 0.0 0.00 0.00 . O

TOP YAW PITCH YAW PITCH AILERON RUDDER
<---- ORRITER ---- ><---- SRM .---- >



TABLE 2: PROGRAM OPTIONS

Option 1 - The program has the capability of disregarding the first trim equality constraint.

This equation corresponds to the trim condition of zero net force in the y-direction. To

exercise this option change the nonzero values of JPT on the trajectory data card from

positive numbers to negative numbers.

Option 2 - The program has the capability of computing the trim solution for the case

where the aileron is not used. To exercise this option change the nonzero values of JPT

on the trajectory data-card from a magnitude of 1 to a magnitude of 2 (i.e., replace

1 by 2 and replace - 1 by - 2).

Option 3 - The program has the capability of replacing the performance criterion stored

internally in the program with the quadratic performance criterion

r(6) = (1/cl) 2 + .. +( 6 /c7 2

where c I , .. , c7 are seven constants specified by the user at execution time. To

exercise this option replace- the fourteen weighting factors in the input data with the

va I ues

W1 ) = c
, = 1, . . . ,7

W2( t) = 0.
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2. PROGRAM DESCRIPTION

TRIMS is a FORTRAN IV computer program composed of a single main or

executive routine and many subroutines. The program subroutines may be viewed

as divided into two main groups. The first group is comprised of the main routine,

entitled TRIMS, plus seven basic subroutines which form the heart of the program.

These are listed in Table 3 together with a brief description of their function. The

second group contains the utility subroutines which perform a specific matrix operation

such as invert a matrix or print out a matrix. There are thirteen of these subroutines

which are listed in Table 4. With the exception of GMSYMM, all of the utility

subroutines are found in the IBM Scientific Subroutine Package *.

In addition to the calling lists, the transfer of information into and out from

the subroutines is achieved by means of five named COMMONS. Their names are

listed in Table 5 together with a brief functional description. The innerconnection

between the main routine, the seven basic subroutines, and the five named COMMONS

summarizing where each is used is shown in Table6. The variables in each of the

named COMMONS are listed and defined in Table 7. The other variables in the

program not in a named COMMON are listed in Table 8.

In the following pages the FORTRAN source listing of each subroutine is given.

The beginning of each listing contains comment cards describing the subroutine which

includes the purpose, input variables, output variables, and the subroutines called.

Flow diagrams are also given for each of the subroutines with the exception of the

IBM SSP subroutines.

* System/360 Scientific Subroutine Package, Version III, Programmer's Manual,

IBM publication GH20-0205-4, Fifthe edition, August 1970.
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TABLE 3 : MAIN ROUTINE AND BASIC SUBROUTINES

TRIM - main routine controlling the basic computational steps.

BLOCK - block data subroutine for storing data internally in the program.

INPUT - subroutine used to read in and print out the input data.

OUTPUT - subroutine used to print out the results of the program.

GRAD 1 - subroutine for computing the deflection angles using the Ist order
gradient method.

GRAD2 - subroutine for computing the deflection angles using the 2nd order
gradient method.

SYSTEM - subroutine containing the equations defining the system dynamics
and the corresponding equations for evaluating the derivatives
required by the gradient methods.

COST - subroutine containing the equations defining the performance
criterion and the corresponding derivatives.

TABLE4 : UTILITY SUBROUTINES

GYSYMM - symmetrize a matrix

MCPY - matrix copy

MSTR - storage conversion of a matrix

LOC - location in compressed-stored matrix

GMSUB - subtract two general matrices

GMPRD - product of two general matrices

GMTRA - transpose of a general matrix

MPRD - matrix product

CCUT - partition a matrix by column

MINV - matrix inversion

SINV - invert a symmetric positive definite matrix

MFSD - triangular factorization of a symmetric positive definite matrix

MXOUT - print a matrix
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TABLE 5 : NAMED COMMONS

/CON/ dimension and accuracy parameters

/ARRAY/ values of trim equation, performance criterion, and
their derivatives

/TRAJ/ trajectory information

/SYST/ data derived from the space shuttle configuration for
computing the system dynamics and trim equation

/PERF/ data used to compute the performance criterion

TABLE 6: INNERCONNECTION OF SUBROUTINES AND NAMED COMMONS

where v) i i- - N
used a I z

requires "0 N \ < \

TRIMS X X X X X

BLOCK X X X X

INPUT X X X X

OUTPUT
GRAD1 X X: X X x

GRAD2 X X, X X x

SYSTEM , X X

COST I X X
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TABLE 7: Variables in Named COMMON

Program
Symbol Dimension Symbol Explanation

/ CON/
M ... m Number of trim angles.
NS ... n Number of trim equations.
KMAX ... K Maximum number of iterations allowed.

max
EPSO . . . 0  Relative tolerance used in subroutine SINV.

MPT . . . . . Maximum number of trajectory points allowed.

/ARRAY/
AV 6 a Constant terms in trim equations.
BV 6 1 (8) Terms in trim equations varying with trim angles.

BM 60 ab / a6 First derivatives of trim equations.

BT 6,60 a2b / 2 Second derivative of trim equations.
RS . . . r Performance criterion.

RV 10 ar / a6 First derivative of performance criterion.

RM 100 a2r/ d62 Second derivative of performance criterion.

/TRAJ/
JPT 12 . . Index vector determining which trajectory

points to use (see program input data).
TF 12 . . . Flight times corresponding to the different

possible trajectory points.

/SYST/
YBT . .. . .. Yaw bias torque (see program input data).
RBT . . . . . . Roll bias torque (see program input data).
S . . . S Reference area.
BREF . . . bref Reference length.

X1,Y1,Z1 . . . xl'1 ,yzI Coordinates of (top orbiter) engine 1.

X2,Y2,Z2 . .. x2Y 2 ' 2  Coordinates of (right orbiter) engine 2.

X3,Y3,Z3 . .. x3Y 3 1Z 3  Coordinates of (left orbiter) engine 3.

X4,Y4,Z4 .. . x4Y4,z 4  Coordinates of (right SRM) engine 4.

X5,Y5,Z5 . .. x. X5 5,z 5  Coordinates of (left SRM) engine 5.

XMRP ... x
mrp

YMRP . . . y Coordinates of moment reference point.

ZMRP . .. z
mrp

XCG 12 x 1XCG 12 Xcg Coordinates of center of gravity
ZCG 12 z g(Y = 0).
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TABLE7: Variables in Named COMMON, Continued

Program
Symbol Dimension Symbol Explanation

/SYST/, Continued
Q 12 q Dynamic pressure.
V 12 V Vehicle velocity relative to air.
VY 12 V Side wind velocity.

Y
F 12 F Thrust per orbiter engine.
FSRM 12 FSR M  Thrust per SRM engine.

CYB 12 C Stability derivative.
CLB 12 C Stability derivative.

CNB 12 C Stability derivative.

DCYB 12 nC Change in C due to dorsal fins.

DCLB 12 , C Change in C due to dorsal fins.

DCN BA 12 (AC )AFT Change in C due to aft dorsal fin.

DCNBF 12 (ACn )FORWAR D Change in Cng due to forward dorsal fin.

CYA 12 C Stability derivative.
y6a

CLA 12 C Stability derivative.t6a

CNAR 12 C Stability derivative.

y6r Stability derivative.

CLR 12 C Stability derivative
L,6r

CNR 12 C Stability derivative.
ngr

/PERF/
W1 7 W1  Vector of relative weighting factors

(see program input data).
W2 7 W2  Vector of relative weighting factors

(see program input data).
DAMAX 12 6a max Maximum deflection angle allowed for aileron.

DRMAX 12 6 rmax Maximum deflection angle allowed for rudder.

QQ 12 q Dynamic pressure.
DMAX ... . .. Maximum deflection angle allowed for

orbiter rocket engines.
SA . . . S Reference area corresponding to the drag

a induced by the aileron.
SR . .. . S Reference area corresponding to the drag

r induced by the rudder.
CDA . . . CDa Coefficient of drag corresponding to the aileron.

CDR . . . CDr Coefficient of drag corresponding to the rudder.
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TABLE 8: Variables not in Named COMMON

Program
Symbol Dimension Symbol Explanation

I CASE ... ... Number of the current case.

I GO ... .. . Index controlling sequence of cases.

I . . ... Do loop index.

L ... ... Number of the trajectory point.

IGRAD ... ... Order of the gradient method to be used.

K • . . k Number of the iteration.

EPS . .. E Convergence bound in gradient methods.

TIME . . . t Flight time of the current trajectory point.

STEP . .. a Iteration step size used in first order gradient method.

DELTA 10 6 Vector of trim angles.

LAMDA 6 A Vector of Lagrange multipliers.

J . .. ... Do loop index.

DET ... ... Determinant of a matrix

MNS .. .. . . Difference between number of trim angles and trim
equations

NORM . . . . . . Quantity for determining trim solution accuracy.

RU 10 ru Subvector of ar/ 6.

RX 10 r Subvector of a r/a6.
X

X 10 x Subvector of 6 (subroutine GRAD 1).

X 10 . . . Dummy vector (subroutine GRAD2).

BX 60 B Square nonsingular submatrix of ab/8 6.
X

DU 10 4u Correction to subvector u of 6.

BU 60 B Submatrix of ab/86.

JI ... ... Matrix element index

M2 ... ... m(m+)/2.

IER ... . . Index used to indicate errors in inverting
a positive definite matrix.

HL 10 hx. Derivative of hamiltonian with respect to .

R 100 h66 Second derivative of hamiltonian with respect to 86
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TABLE 8: Variables not in Named COMMON (Continued)

Program
Symbol Dimension Symbol Explanation

Y 10 . . . Dummy vector

DEL 10 A6 Correction to 6.

BR 60 BR- 1  Matrix product.

LAM 6 &X Correction to X .

BRB 36 BR 8' Matrix product.

HD 10 h6 Derivative of hamiltonian with respect to .

D 60 . .. Dummy matrix.

B 60 hA 6 Mixed second derivative of hamiltonian.

CYBCG . . . ... Stability derivative C about cg .

CNRCG . . . . .. Stability derivative Cn about cg
r

CLBCG ... . . Stability derivative C about cg.

CNBCG . . .Stability derivative Cn about cg.

CLACG . . . . . Stability derivative C about cg .

CNACG ... ... Stability derivative Cn about cg.
a

CLRCG .. . . .. stability derivative C about cg .
r

CI ... ... Cos 180.

C2 ... ... Cos 120

C3 ... ... Cos 3.5°

C4 ... . . Cos 150.

S1 ... ... Sin 180.

S2 ... ... Sin 120 .

S3 ... ... Sin 3.50 .

S4 ... ... Sin 150 .
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TABLE 8: Variables not in Named COMMON (Continued)

Program
Symbol Dimension Symbol Explanation

IJ . . . .. Matrix element index.

QS ... ... Product qS.

QSB ... ... Product qSbre f

RAD . . . . . . Conversion factor from radians to degrees.

BETA . . . Side slip angle.

" .. . .. . Vector element index.

C ... . Dummy vector.
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C ------------------------------------------------------------------ TRM 0010
C TRM 0020
C *** TPIMS COMPUTER' PROGRAM *** TRM 0030
C TRW 0040
C DEVELOPED RY: M.HUTTON THE SINGER CO. FEBRUARY 1973 TRM 0050
C TRM 0060
C ----------------------- TRM 0070
C TRM 0080
C PURPOSE MAIN ROUTINE FOR EXECUTION OF COMPUTIONS OF LATERAL TRM 0090
C ------- TRIM ANGLES FOR SPACE SHUTTLE. TRM 0100
C TRM 0110
C INPUTS (SEE SURPOUTINE INPUT). TRM 0120
C ------ TRM 0130
C TRM 0140
C OUTPUTS (SEE SURROUTINE OUTPUT). TRM 0150
C ------- TM 0160
C TRM 0170
C SUBROUTINES CALLED INPUT , GRAD1 GRPAD2 9 OUTPUT . TRM 0180
C ---------- ------ TRM 0190
C TRM 0200
C * R * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TRM 0210
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TRM 0220
C TRM 0230
C TRM 0240

REAL LAMDA TRM 0250
DIMENSION DELTA(10) , LAMDA(6) TRM 0260
COMMON /CON/ M , NS , KMAX , FPSO , MPT TRM 0270

C TRM 0280
C TRM 0290
C *** INITIALIZATION TRM 0300

ICASE = 1 TRM 0310
DO 10 I=1,M TRM 0320

10 DELTA(I) = 0. TRM 0330
DO 20 T=19NS TRM 0340

PO LAMDA(I) = 0. TRM 0350
C TRM 0360
C *** ENTER INPUT DATA TRM 0370

30 CALL . INPUT(IGRADEPSiSTEP IGO9ICASE) TRM 0380
C TRM 0390
C *** COMPUTE TRIM SOLUTION FOR EACH OF THE SELECTED POINTS ALONG TRM 0400
C THF TRAJECTORY TRM 0410

DO 60 L=1MPT TRM 0420
C TRM 0430
C *** DETERMINE COMPUTATIONAL METHOD TO BE USED TRM 0440

IF(IG.RAD-1) 50o40,50 TRM 0450
C TRM 0460
C *** COMPUTE TRIM SOLUTION USING IST ORDER GRADIENT TRM 0470

40 CALL GRAD1(KL,TIMEDELTALAMDAIGRADEPSSTEP) TRM 0480
GO TO 60 TRM 0490

C TRM 0500
C *** COMPUTE TRIM SOLUTION USING 2ND ORDER GRADIENT TRM 0510

50 CALL GRAD2(K*LTIME,DELTAgLAMDA IGRADEPS) TRM 0520
C TRM 0530
C *** PRINT RESULTS TRM 0540

60 CALL OUTPUT(KL,MTIMEDELTAMPT) TRM 0550
C TR 0560
C *** TEST IF END OF COMPUTER RUN TRM 0570

IF(IGO-1) 80970,80 TRM 0580
C TRM 0590
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C e*** O TO THF NEXT CASF TRM 0600
70 TCASE = TCASE * 1 TRM 0610

An TO 30 TRM 0620
C TRM 0630
RO CALL EXIT TRM 0640

ENn TRM 0650
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TRIMS Flow Diagram

START

E6 = DELTA
ICASE =1 LAMDAX = LAMDA

6=0
E = EPS

X-0
0 = STEP

30 , t = TIME

INPUT

SIGRAD, E,

, IGO,ICAS

60,
- -L = I,MPT

I
? NO

IGRAD = I

YES
40 50

GRADI GRAD2

KL, t, 12 & K, L, t, b, X

IGRADF Erc I GRAD,E

60
UTPUT

L SK,L,M,t,
6, MPT

70

ICASE YES TGO = 1
ICASE + I

NO
80

EXIT
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C 
.......--..-- ---------- ------- LK 0010

C -LK 0020

C SURPROGRAM BLOCK BLK 0030

C RLK 0040

C -----.--------- - ----- ------------------------------------------BLK 0050

C 
ALK 0060

C PURPOSE BLOCK DATA SUBROUTINE FOR STORING DATA INTERNALLY IN THE BLK 0070

C PROGRAM. THIS IS THE AERODYNAMIC DATA REQUIRED TO COMPUTERLK 0080

C COEFFICIENTS OF LATERAL TRIM EQUATIONS. BLK 0090

C 
RLK 0100

C COMMON PLOCKS /CON/ , /TRAJ/ , /SYST/ 9 /PERF/ RLK 0110

C ----- -..-- RLK 0120
C RLK 0130

C4* 44* * 4 * * 4 R* * * * 4*4 44 RLK 01430

C * * * * + * * * * * * * * * * * * * * * * * * * * * * * * RLK 0150

C RLK 0160

RLOCK DATA RLK 0170

C RLK 0180

C RLK 0190

COMMON /CON/ M ' NS 9 KMAX , FPSO , MPT 8LK 0200

COMMON /TRAJ/ JPT(12) , TF(12) BLK 0210

COMMON /SYST/ YBT, RBT, X1, X29 X3, X4, X5, XMRP. RLK 0220

I So REF, Y1-9 Y29 Y39 Y49 YS, YMRP, BLK 0230

2 Zl, Z29 Z3, Z49 Z5, ZMQRP BLK 0240

3 XCG(12). ZCG(12), Q(12)o V(12), VY(12)o RLK 0250

4 F(12), FSRM(12), CYB(12) CLR(12), CNR(12), RLK 0260

5 DCYB(12). DCLP(12)9 DCN8A(12), DCN8F(12), CYA(12)9 8LK 0270

6 CLA(12)9 CNA(12). CYR(12), CLR(12), CNR(12) BLK 0280

COMMON /PERF/ W1(7)9 W2(7), DAMAX(12)*DRMAX(12), 00(12), RLK 0290

1 DMAX, SA, SR. CDA9 CDR BLK 0300
CBLk 0310

C RLK 032-0

DATA MNSgKMAXEPSOMPT / 7, 3. 3, 0.00001, 12 / RL'K 0330

C RLK 0340

DATA TF / 25.0 9 40.0 9 50.0 9 60.0 , 65.0 , 70.0 9 RLK 0350

1 75.0 , 80.0 , 90.0 * 100.0 , 110.0 , 140.0 / BLk 0360

C 
8LK 0370

DATA X1,Y1,Z1 / 0., 0. , -9.34 / RLK 0380

DATA X29Y2,Z2 / 0.9 1.3469 -6.68 / RLK 0390

DATA X39Y39Z3 / 0.9 -1.346. -6.68 / RLK 0400

DATA X4,Y4,74 / 0.* 0. * 0. / BLK 0410

DATA XSYSZ5 / 0., 0. , 0. / RLK 0420

C 
RLK 0430

DATA XCG / 23.345, 23.42 9 23.47 9 23.52 , 23.545, 23.57 9 BLK 0440

1 24.13 9 24.18 , 24.33 , 24.5359 24.74 9 25.62 / RLK 0450
CLK 0460

DATA ZCG / -1.58 ,-1.58479-1.59149-1.59539-1.5979,-1.60 BLK 0470

1 -1.46269-1,455 ,-1,440 ,-1.43279-1.42559-1.400 / BLK 0480

C RLK 0490

DATA XMRPYMRPZMRP / 21.69 0.9 -1.47 / BLK 0500

C 
RLK 0510

DATA 0 .482E+4 9 .987E+4 *, 134E+5 , .174E+5 , RLK 0520

1 .194E+5 * .212E+5 * .226E+5 9 .233E+5 * RLK 0530

2 .217E+5 , .165E+5 * .117E+5 9 .231E+4 / RLK 0540

C BLK 0550

DATA S * BREF / 317.73 , 28.322 / RK 0560

C RLK 0570

DATA V / 95.4 * 150. * 190. * 241. * 272. * 305. BLK 0580

1 343. * 385. * 486. 9 612. * 768. * 1520. / RLK 0590
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C RLK 0600
DATA VY / 2. , 9. , 15. , 24. , 29. , 34. , RLK 0610

1 40. , 44. , 30. 9 0. , 0. , 0. / RLK 0620
C RLK 0630

DATA F 1.65E+6 , 1.76E+6 , 1.825E+6 , 1.885E+6 9 BLK 0640
1 1.92F+6 , 1.94E+6 , 1.97E+6 * 1.98E+6 * RLK 0650
2 2.025E+6 , 2.04E+6 * 2.06E+6 * 2.07E+6 / RLK 0660

C RLK 0670
DATA FSRM / 12*0. / RLK 0680

C RLK 0690
DATA CY8 / -1.66 ,-1.68 ,-1.70 ,-1.83 ,-1.99' ,-2.05 9 BLK 0700

1 -1.97 ,-1.92 ,-1.93 ,-2.03 ,-1.98 ,-1.60 / RLK 0710
C BLK 0720

DATA CLR / -. 283 ,-.285 ,-.286 ,-.291 ,-.298 ,-.326 * RLK 0730
1 -. 384 ,-.356 *-.299 ,-.246 -. 196 ,-.122 / RLK 0740

C RLK 0750
DATA CNR / .302 , .315 9 .325 , .404 * .468 , .460 , RLK 0760

1 .344 , .266 9 .238 9 .269 9 .207 g-.0284 / RLK 0770
C RLK 0780

DATA DCYR / -. 011 ,-.012 ,-.013 9-.015 ,-.016 ,-.017 , 8LK 0790
1 -. 0165 ,-.014 ,-.0105 ,-.008 9-.006 ,-.004 / RLK 0800

C RLK 0810
DATA DCLR / .0031 9 .0032 9 .0033 9 .0036 9 .0038 9 .0042 , RLK 0820

1 .0042 , .0035 9 .0027 9 .0017 9 .0014 , .001 / RLK 0830
C RLK 0840

DATA DCRIA / .0064 * .0067 * .0074 9 .0085 9 .0094 , .0104 9 RLK 0850
1 .01 * .0088 , .0075 , .005 9 .004 9 .0028 / RLK 0860

C RLK 0870
DATA DCNBF / -. 004 ,-.0044 ,-.0048 ,-.0056 9-.006 ,-.006 BRLK 0880

1 -. 0058 ,-.005 ,-.0044 ,-.0028 ,-.0072 ,-.0015 / RLK 0890
C RLK 0900

DATA CYA / 12*0. / RLK 0910
C RLK 0920

DATA CLA / -. 0430 ,-.0458 ,-.0487 ,-.0544 9-.0630 ,-.0630 , RLK 0930
1 -. 0544 9-.0458 ,-.0286 9-.0215 ,-.0158 ,-.00859 / RLK 0940

C ALK 0950
DATA CNA / .0458 9 .0444 , .043 9 .0358 9 .0344 , .0301 , RLK 0960

1 .0258 9 .0244 * .0172 , .002869-.00286,-.0114 / RLK 0970
C RLK 0980

DATA CYP .504 9 .408 9 .462 * .394 , .319 9, 300 9 8LK 0990
1 .292 9 .217 9 .132 , .0961 , .0749 , .0573 / RLK 1000

C 8LK 1010
DATA CLR / .273 , .265 , .259 9 .215 9 .181 9 .173 , RLK 1020

1 .206 9 .186 , .105 , .055 , .0406 , .0286 / BLK 1030
C BRL 1040

DATA CNR / -. 510 ,-.489 ,-.473 *,-388 9-.310 ,-.345 , RLK 1050
1 -. 340 ,-.254 ,-.137 ,-.105 ,-.077 ,-.061 / 9LK 1060

C BLK 1070
DATA DAMAX / 40. 9 40. * 40. 9 40. , 25.1 , 14.1 9 RLK 1080

1 9.47 * 8.91 , 10.69 , 17.5 , 33.64 , 40. / BLK 1090
C RLK 1100
C DATA DAMAX / 15. 9 15. 9 15. 15 15. * 14.1 * LK 1110
C 1 9.47 9 8.91 9 10.69 9 15. 15. 15. / BLK 1120
C RLK 1130

DATA DRMAX 30. , 30. 9 23.5 , 14.7 , 8.19 9 8.19 9 RLK 1140
1 5.54 , 5.23 9 6.27 , 10.23 9 19.67 , 30.0 / RLK 1150

C RLK 1160
DATA QQ .482E+4 * .987E+4 , .134E+5 * .174E+5 , BLK 1170

1 .194E+5 , .212E+5 , .226E+5 9 .233E+5 , BLK 1180
2 .217F+5 , .165E+5 , .117E+5 , .231E+4 / BLK 1190
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C PRLK 1200

DATA DMAX, SA, SR, COA, CDR / 30. * 4*0. RLK 1210

C RLK 1220

END RLK 1230
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C ---------------------------------------- NT 0010
C INT 0020
C SURROUTINE INPUT(IGRADEPSSTEPIGOICASE) INT 0030
C INT 0040
C -------------------------------------------------------------------- NT 0050
C INT 0060
C PURPOSE SURPOUTINE USED TO READ IN AND PRINT OUT THE INPUT DATA. INT 0070
C ------- INT 0080
C INT 0090
C INPUTS ICASE = NO. OF CURRENT CASE. INT 0100
C ------ INT 0110
C INT 0120
C OUTPUTS IGRAD = ORDER OF GRADIENT METHOD TO RE USED. INT 0130
C ------- EPS = CONVERGENCE ROUND. INT 0140
C STEP = STEP SIZE IF IST ORDER GRADIENT METHOD USED. INT 0150
C IGO = INDEX CONTROLING SEQUENCE OF CASES. INT 0160
C INT 0170
C SURROUTINES CALLFD NONE TNT 0180
C ----------- ------ TNT 0190
C INT 0200
C * * * * * * * * * * * * ** * * * * * * * * * * * TNT 0210
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *NT 0220
C INT 0230

SUBROUTINF INPUT(IGRAD,EPSSTEP,IGOICASE) INT 0240
C INT 0250
C INT 0260
1000 FORMAT(72Al) INT 0270
1010 FORMAT(1HI99X,4HCASE,13,8X,72A1 / 1OX94H---- ) INT 0280
1020 FORMAT(//5X,3OHCOMPUTATION CONTROL PARAMETERS) TNT 0290
1030 FORPAT(5I,5X,2E10.3) TNT 0300
1040 FORMAT(5X,30H------------------------------ 10XX61HUSE IST ORDERINT 0310

1 GRADIENT METHOD ITERATION STEP SIZE = ,E10.3 / 50X,3H---) INT 0320
1050 FORMAT(5X30H---------------------------------1OX3HUSF 2ND ORDERINT 0330

1 GRADIENT METHOD / 50X3H---) INT 0340
1060 FOPMAT(SBX,48HUPPEP ROUND USED IN THE CONVERGENCE CRITERION = INT 0350

1 F10.3) INT 0360
1070 FOPMAT(SX,17HTRAJECTORY POINTS ) INT 0370
1080 FOPMAT(1215) INT 0380
1090 FORMAT(SX917H -----------------,13X9215 ) INT 0390
1100 FORMAT(//5X,26HSYSTEM DYNAMICS PARAMETERS) INT 0400
1110 FORMAT(2F10.0) INT 0410
1120 rOPMAT(5X,26H ------------------- ------ 99X INT 0420

1 1PH YAW RIAS TORQUE =,F11.1 / INT 0430
2 40X,1AHROLL BIAS TORQUE =F11.1 ) INT 0440

1130 FOPMAT(//SX,32HPERFORMANCE CRITERION PARAMETERS) INT 0450
1140 FOPMAT(7F10.0) INT 0460
1150 POPMAT(5X,32H-------------------------------- INT 0470

1 13X,5HWll =9F7.2915X.5HW21 =9F7.2 / INT 0480
2 50X,5HW12 =,F7.2915X95HW22 =,F7.2 / INT 0490
3 35Xv9HWFIGHTING6XSHW13 =,F7.2915X95HW23 =9F7.2 / INT 0500
4 35X99HFACTORS ,6XSHW14 =,F7.2,15X,5HW24 =,F7.2 / INT 0510
5 50X95HW15 =9F7.2915X,5HW25 =,F7.2 / INT 0520
6 50X,5HW16 =,F7.2,15X5HW26 =,F7.2 / INT 0530
7 50X.5HW17 =,F7.21SX,5HW27 =,F7.2 ) INT 0540

1160 FORMAT(I1) INT 0550
1170 FORMAT(//SX,6H* * * ERROR IN THE INPUT DATA -- COMPUTER RUN TEINT 0560.

1RMINATED * * * ) INT 0570
C INT 0580

DIMENSION IDP(50) , ICP(50) , LINE(72) TNT 0590
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COMMON /CON/ M , NS * KMAX q EPSO , MPT TNT 0600

COMMON /TRAJ/ JPT(12) * TF(12) INT 0610

COMMON /SYST/ YRT, RRT INT 0620

COMMON /PERF/ W1(7), W2(7) INT 0630

C INT 0640

C INT 0650

C "* ENTER CASE IDENTIFICATION TITLE TNT 0660

PEAD(5,1000) (LINE(I),I=1,72) INT 0670

WRITE(6,1010) ICASE , (LINE(I),I=1972) INT 0680

C INT 0690

C o ENTER COMPUTATIONAL CONTROL PARAMETERS INT 0700

WRTTE(6,1020) INT 0710

READ(,1030) IGWAD , EPS , STEP INT 0720

TF(IGRAO-2) 10,20910 INT 0730

10 WPITE(691040) STFP INT 0740

GO TO 30 INT 0750

20 WRITF(691050) INT 0760

30 WRTT(6.1060) EPS TNT 0770

C INT 0780

C ee ENTER POINTS ALONG TRAJECTORY FOR COMPUTING TRIM TNT 0790

WRITE(6,1070) TNT 0800

READ(5.10R0) (JPT(I),I=1*MPT) INT 0810

WRITE(6,1090) (JPT(I)9I=1,MPT) INT 0820

C INT 0830

C *** ENTER SYSTEM DYNAMICS PARAMETERS INT 0840

WRITE(6.1100) INT 0850

READ(5,1110) YRT , RBT INT 0860

WRTTE(691120) YAT , RRT INT 0870
I TNT 0880

C * ENTER PERFORMANCE CRITERION PARAMETERS TNT 0890

WRITE(691130) INT 0900

READ(5,1140) (WIlI),I=1,M) TNT 0910

READ(5,1140) (W2(T),I=1,M) INT 0920

WRITF(6,1150) W1(1) * W2(1) * W1(2) , W2(2) 9 W1(3) , W2(3) , TNT 0930

1 W1(4) * W2(4) , W1(5) 9 W2(5) * WI(6) * W2(6) , INT 0940

W1(7) 9 W2(7) INT 0950

C INT 0960

C * ENTER END OF CASE CARD INT 0970

READ(S,1160) IGO INT 0980

.TF(IGO-1) 200,220,200 INT 0990

200. IF(IGO-2) 210.2209210 INT 1000

210 WRTTE(6,1170) TNT 1010

CALL EXIT INT 1020

220 CONTINUE INT 1030

C INT 1040

RETURN INT 1050

END INT 1060
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INPUT Flow Diagram

ENTER
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NO ERROR IN
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ES
220

RETURN EXIT

132



C ----------------------------------------- ---------------------- .. OUT 0010
C OUT 0020
C SUBROUTINE OUTPUT(K,LMTIMEDELTAMPT) OUT 0030
C - OUT 0040
C ------------------------------- ------------------------------ ------ OUT 0050
C .OUT 0060
C PURPOSE SUBROUTINE USED TO PRINT OUT THE RESULTS OF THE PROGRAM. OUT 0070
C ------- OUT 0080
C OUT 0090
C INPUTS K = NO. OF ITERATIONS. OUT 0100
C ------ L = NO. OF THE TRAJECTORY POINT. OUT 0110
C M = NO. OF TRIM ANGLES. OUT 0120
C TIME = FLIGHT TIME OF THE TRAJECTORY POINT. OUT 0130
C DELTA = VECTOR OF TRIM ANGLES. OUT 0140
C MPT = INDEX USED TO DETERMINE LAST TRAJECTORY POINT.OUT 0150
C OUT 0160
C OUTPUTS NONE OUT 0170
C ------ .OUT 018-0
C OUT 0190
C SUBROUTINES CALLED NONE OUT 0200
C ----------- - OUT 0210
C OUT 0220
C * * * * * * * * * * * * * * * * * * * * * * * OUT 0230
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * OUT 0240
C OUT 0250

SUBROUTINE OUTPUT(KL9MTIMEDELTAMPT) OUT 0260
C OUT, 0270
C OUT 0280
1010 FORMAT(////5X,22HTRIM. DEFLECTION ANGLES OUT 0290

1 /SX,22H---- ---------------- -- 7X,13HTRAJ. FLIGHT,26Xt OUT 0300
2 SHDELTA32X6HNO. OF / 35X8SHPT. TIME (1) (2) (3) OUT 0310
3 (4) (5) (6) (7) ITERATIONS ) OUT 0320

C1020 FORMAT(35X,I392XF6.It1X,7F827XIS) OUT 0330
1020 FORMAT(31X,1H.,3XeI3.2XF6.19IX,7F8.294X*1H ,2X IS) OUT 0340
1030 FORMAT( 48X55H TOP YAW PITCH YAW PITCH AILERON RUOUT 0350

IDDER , /48X,40H<---- ORBITER ---- ><---- SRM ---- > ) OUT 0360
1040 FORMAT(31X,77H** **. . * *...........o ,..,**,** ... .. ,.........OUT 03'70

1...*********. **... ....,,, ) OUT 0380
1050 FORMAT(31X.IH.,75XlH.) OUT 0390

C OUT 0400
DIMENSION DELTA(1) , ANGLE(10) OUT 0410
DATA RAD / 57,2957795 / OUT 0415

C OUT 0420
C OUT 0430

IF(L-1) 20910,20 OUT 0440
10 WRITE(6,1010) OUT 0450

WRITE(691040) OUT 0460
WRITE(6,1050) OUT 0470
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20 IF(K) 40930,30 OUT 0480
30 DO 35 I=1,M OUT 0485
35 ANGLE(1) = RAD * DELTA(I) OUT 0486

WRITE(6,1020) L x TIME 9 (ANGLE(I)*I=19M) , K OUT 0490
40 IF(L-MPT) 60,50,60 OUT 0500
50 WRITE(6,1050) OUT 0510

WRITE(691040) OUT 0520
WRITE(691030) OUT 0530

60 RETURN OUT 0540

END OUT 0550
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OUTPUT Flow Diagram
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c 
ONE 0010

C 
ONE 0020

C SUBROUTINE GRADI(,LTIMEDELTALAMDA9IGRADEPS9STEP) ONE 0030

C ONE 0040

C ------ ------------------------------------------------------------ONE 0050
C ONE 0060

C PURPOSE SUBROUTINE FOR COMPUTING THE DEFLECTION ANGLES USING THE ONE 0070

C ------- 15T ORDER GRADIENT METHOO. ONE 0080
ONE 0090

C INPUTS K = NO. OF ITERATIONS. ONE 0100

C L = NO. OF THE TRAJECTORY POINT. ONE 0110

C TIME = FLIGHT TIME OF THE TRAJECTORY POINT. ONE 0120

C DELTA INITIAL GUESS OF TRIM ANGLES. ONE 0130

C LAMDA = INITIAL GUESS OF LAGRANGE MULTPLIERS. ONE 0140

C IGRAO = 1 ONE 0150

C EPS = CONVERGENCE HOUND. ONE 0160

C STEP = STtP SIZE. ONE 0170

C ONE 0180

C OUTPUTS DELTA = VECTOR OF TRIM ANGLES. ONE 0190

C ------- LAMDA = VECTOR OF LAGHANGE MULTIPLIERS, ONE 0200

C ONE 0210

C SUHROUTINES CALLED SYSTEM , COST , MCPY * CCUT , MINV * GMPRD .ONE 02201

C --------------- - - ONE 0230CONE 0230

C ONE 0240

C * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * ONE 0250

C . * * ** * * * . . . *a . . . . * . . * * * * * * * * ONE 0260

C ONE 0270

SUBROUTINE GHAD1U ,LTIME,DELTALAMDAIGRADgEPS9STEP) ONE 0280

C ONE 0290

C ONE 0300

1000 FORMAT.(//SX,75H** wARNING ** IST ORDER GRADIENT ALGORITHM USED THONE 0310

lE MAX. NO. OF ITERATIONSI4 /20X96HNORM =PE10310OX5HEPS =iE10.3)ONE 0320

C ONE 0330

C . , . . . * * TYPE AND STORAGE ALLOCATION a 9 * * . . * . ONE 0340

REAL LAMDA , NORM ONE 0350

DIMENSION DELTA(10), LAMDA(b), BX(60), BU(60)t RX(10)9 RU(10)9 ONE 0360

1. X(10), DX(10) DU(10) LB(10)9 MB(10) ONE 0370

COMMON /ARRAY/ AV(6)9 BV(6), BM(60)9 BT(6960)9 RS, RV(1O), RM(100)ONE 0380,

COMMON /CON/ M , NS 9 KMAX , EPSO , MPT ONE 0390

COMMON /TRAJ/ JPT(12) , TF(12) ONE 0400
C ONE 0410

C ONE 0420

C *** TEST. WHETHER THIS.TRAJECTORY POINT IS TO BE USED ONE 0430

IF(JPT(L)) 5,195 ONE 0440

1 K = -1 ONE 0450

GO TO 130 ONE 0460

C ONE 0470

C *** COMPUTE THE TIME OF FLIGHT ONE 0480
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b TIME = TF(L) ONE 0490
C ONE 0500
C *** ST-ART INITIAL ITERATION ONE 0510

K = 0 ONE 0520
MNS = M - NS ONE 0530

C ONE 0540
10 CONTINUE ONE 0550

C ONE 0560
C.*** COMPUTE GRADIENT TERMS CORRESPONDING TO SYSTEM DYNAMICS ONE 0570

CALL SYSTEM(KqLqNSMOELTA.IGRAD) ONE 0580
C ONE 0590
C * PARTITION THE MATRIX BM INTO MATRICES 8X AND BU ONE 0600

IF(MNS) 30,3040 ONE 0610
30 CALL MCPY(BMbXHANSM,0U) ONE 0620

60 TO 50 ONE 0630
40 J = NS + 1 ONE 0640

CALL CCUT (MJ,8XHBUNSM,0) ONE 0650
C ONE 0660
C *~ COMPUTE THE INVERSE OF THE MATRIX BA ONE 0670

50 CALL MINV(BXNSDETvL8MB) ONE 0680
C ONE 0690
C se COMPUTE VECTOR A ONE 0700

00 60 I=1sNS ONE 0710
60 DU(I) = - AV(I) - BV(I) ONE-0720

CALL GMPRUD(BXUs XNSoNSl1) ONE 0730
DO 65 I=19NS ONE 0731

65 X(I) = X(I) + UX(I) ONE 0732
C ONE 0740
C ** COMPUTE GRADIENT TERMS CORRESPONDING TO PERFORMANCE CRITERION ONE 0750

00 70 I=1lNS ONE 0760
70 DELTA(1) = X(I) ONE 0770

IF(MNS) 130,130,80 ONE 0780
80 CALL COST(KLMDELTAIGKAD) ONE 0790

C ONE 08'00
C ** PARTITION THE VECTOR RV INTO VECTORS RX AND RU ONE 0810

J = NS + 1 ONE 0820
CALL. CCUT(RVpJgRXRUto,,M0) ONE 0830

C ONE 0840
C *0* COMPUTE THE VECTOR LAMDA ONE 0850

CALL GMPRD(RX,~BXLAMDAl NSNS) ONE 0860
C ONE 0870
C ** COMPUTE THE NEw ESTIMATE OF DELTA ONE 0880

CALL. GMPRD(LAMDAqiUUU9IqNSqMNS) ONE. 0890
NORM = 0. ONE 0900
DO 90 I=1sMNS ONE 0910
DUI) = (DU(I) -I) = (I)) ) STEP ONE. 0920
NORM = NORM * DU(I)**2 ONE 0930

90 DELTA(NS+I) = DELTA(NS+I) * OU(I) ONE 0940
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00 95 I=1,NS 
ONE 0941

95 NORM = NORM + UA(I)**2 ONE 0942

C. 
ONE 0950

C *** TEST IF THE NEW ESTIMATES ARE SUFFICIENTLY ACCURATE ONE 0960

IF(NORN-EPS) 13091309100 ONE 0970

C ONE 0980

C ** CHECK FOR EACESSIVE NUMBER OF ITERATIONS ONE 0990

100 IF(K-KMAX) 110,120,120 ONE 1000

C 
ONE 1010

C *** PERFORM ANOTHER ITERATION ONE 1020

110 K = K + 1 ONE 1030

GO TO 10 ONE 1040

C 
ONE 1050

1rU wRITE(b,1000) K, NORM, EPS ONE 1060

130 RETURN ONE 1070

END ONE 1080
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GRADI Flow Diagram

ENTER

? ~ YES
JPT(L)= 0 K-= 1

NO

TIME = TF(L)

K= 0

MNS = M-NS

10

6' = x u ]

SYSTEM Compute
K,L,NS,M, a, b, ab/86
6 , IGRAD

30

NO
B = BM= ab/6 MNS > 0

YES
40

M

XI U

NS

50

-1Ax = -B (a +b(6))
- x

x = x +Ax
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GRAD 1 Flow Diagram (Continued)

6' = C x u' ]

NS

NO
MNS 0

YES
80

COST Compute

K, L, M, \ r/a
8, iGRAD

RV = ar/66
=[r ir

X U

" '= r BSxx

DU = du'
= ( ' Bu -ru)

U + u 10

u_= _x us =KKxi+

YES 120

100
NO N

NORM E K.< KMAX

YES
130

RETURN

140



C TWO------------------------- ---------- -- 0010
C TWO 0020
C SUH4OUIINlE ;IAO2( i,LfIME,DELTALAMOAIGRADEPS) TWO 0030
C TWO 0040

S---- - --------------- -------------- T----------------------------TWO 0050
C TWO 0060
C PURPOSE SUH'OUTINE FOR COMPUTING THE DEFLECTION ANGLES USING THE TWO 0070

S ------- 2ND ORDER GRADIENT METHOD. TWO 0080
C TWO 0090
C IN UTS K = NO. OF ITEHATIONS. TWO 0100
C L = NO. OF 'THE TRAJECTORY POINT. TWO 0110
C TIME = FLIGHT TIME OF THE TRAJECTORY POINT. TWO 0120
C DELTA = INITIAL GUESS OF TRIM ANGLES. TWO 0130
C LAMUA = INITIAL GUESS OF LAGRANGE MULTPLIERS. TWO 0140
C IiGRA9.) = TWO 0150
C EPS = CONVEIGENCE BOUND. TWO 0160
C TWO 0170
C OUTPUTS DELTA = VECTOR OF TRHI ANGLES. TWO 0.180
C ------- LAMDA = VECTOR OF LAGRANGE MULTIPLIERS. TWO 0190
C TWO 0200
C SUNNOUTINES CALLED SYSTEM 9 COST 9 SINV 9 MXOUT , MPRD , TWO 0210
C ----------------- GMTRA * GMPRHD GMSYMM , MSTR , GMSUB . TWO 0220
C TWO 0230
C W* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TO 0240
C * * * * * * * * * * * * * e * * * * * * * * * * * * * * * * * * TWO 0250
C. TWO 0260

SURROUTINE ( RADe(KLTIME,OELTALAMDAIGRADgEPS) TWO 0270
C TWO 0280
C TWO 0290
1000 FORMAT(//bA955H** ERROR ** MATRIX R IS NOT POSITIVE DEFINITE TWO 0300

I K =,I3,5XSHEPS =,E12.3 /) TWO 0310
1010 FORMAT'(//A,65SH** WARNING ** LOSS OF SIGNIFICANCE IN INVERTING MATWO 0320

1TRIX R K=,I3,9X,5HEPS =,E12.3 /) -TWO 0330
1020 FORMAT(//5X,57H** ERROR ** MATRIX BRB IS NOT POSITIVE DEFINITE TWO 0340

1 K =,I395 5,HEPS =,E12.3 /) TWO 0350
1030 FORMAT(//5X,7H** wARNING ** LOSS OF SIGNIFICANCE IN INVERTING MATWO 0360

ITRIX B'RB K =,I9,SXSHEPS =,E12.3 /) TWO 0370
100 'FORMAT(//5X,68H** WARNING ** 2ND ORDER GRADIENT METHOD USED MAX. TWO 0380

INO. OF ITEHATIONS13,5X95HEPS =gE12.55X6HNORM =,E12.5 /) TWO 0390
1050 FORMAT(/IOX,9HMATRIX R ) TWO 0400
1060 FOMAT(/IOX,2OHMATRIX R (INVERSE)) TWO 0410
1070 FORMAT(/1Ax,9HMATRIX B ) TWO 0420
1080 FORMAT(/1OX0,11HMATRIX BHB ) TWO 0430

C TWO 0440
REAL LAMDA , LAM 9 NORM TWO 0450
DIMENSION DELTA(10)9 LAMDA(6), DEL(10) LAM(6), HD(10O) HL(10)TWO 0460

1 R(100), 8(60), BR(60), BRB(36)9 D(60)9 X(10)t Y(10) TWO 0470
COMMON /ARRAY/ AV(6), 8V(6)9 BM(60), BT(6960)' RS, RV(10),.RM(I00)TWO 0480
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COMMON /CON/ M , NS , KMAX , EPSO , MPT TWO 0490

CO'AMON /TRAJ/ JPT(12) , TF(12) TWO 0500

FoUIVALENCE (F(1),HM(I)) TWO 0510
C TWO 0520
C TWO 0530

C *** TEST wHETHEr THIS THAJECTORY POINT IS TO BE USED TWO 0540

IF(JPT(L)) 5,r1, TWO 0550

1 K = -1 TWO 0560

GO TO 160 TWO 0570
TWO 0580

C ** C(14PUTE Ht lIME OF FLIGHT TWO 0590

STImE = TF(L) TWO 0600
TWO 0610

K = 0 TWO 0620
.C TW0*0621

-. -. . . . . - - - - - - - - - - - - TWO*0622

C *** OPTION FUN DISREGANDING AILERON TWO*0623

IF(.JPT(L)+?) 10,b10 TWO*0624

6 IGRAO = - IlkAD TWO*0625

C -- -. .-. .-. .- - - - - - - - - - - - - - TWO*0626
%r TWO*0627

Iu CALL SYSTEm(K,L,N),MoELTAILbAO) TWO 0630

CALL COsT(KLM)DELTAIGRAD) TWO 0640
C TWO 0650

C *** COMPUTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO DELTA TWO 0660

I)0 20 1=1,M TWO. 0670

HO(I) = PHV(I) TWO 0680

00 20 J=1-JS TWO 0690

JI = J + (I-1)*NS TWO 0700

20 HO(I) = HI)(I) + LAMUA(J)*HM(JI) TWO 0710

C TWO 0720

C *** COMPUTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO LAMDA TWO 0730

00 30 J=1,NS TWO 0740

30 HL(J) = AV(J) + HV(J) TWO 0750
C TWO 0760

C *** COMPUTE THL 2ND UEIVATIVE OF THE HAMILTONIAN R = HDD TWO 0770

M2 = M*(M+1)/2 TWO 0780

00 0 I=1,M2 TWO 0790

R(I) = PM(I) TWO 0800

00 40 J=1 NS TWO 0810

40 R(I) = R(I) + LAMDA(J)*HT(J,I) TWO 0820

C TWO 0830

C *** COMPUTE THE 2ND DERIVATIVE OF THE HAMILTONIAN B = HLD TWO 0840

C TWO 0850

C ( SEE EOUIVALENCE ST.ATEMENT ) TWO 0860
C TWO 0870

C *** COMPUTE INVERSE OF MATtIX k TWO 0880

CALL SINV(RM,EPSU,IEN) TWO 0890
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IF(IEk) O,70.b0 TWO 0900
50 WRITF(o,1000) K , EPSU TWO 0910

W ITE(b.100) - TWO 0920
CALL MAUUTJ(l, Mo9iltoolji1) TWO 0930
CALL tAIT TWO 0940

60 WRITE(b,1010) K , EPSO TWO 0950
WRITE(6,1050) TWO 0960
CALL MXUUT(IqPmMl,60132,1) TWO 0970

C TWO 0980
C ** COMPUTE MATRIX TWO 0990

70 CALL MPRIJ(,HrfNStM,O,0lM) TWO 1000
'C TWO 1010
C TWO 1020.
C COMPUTE MATRIX BR TWO 1030

CALL (GMTRA(H(N),NSM) TWO 1040
CALL (M-MPRU (HR t9,t1nRHNS,M,NS) TWO 1050
CALL (IMSYMA(BR~8,D NS) TWO 1060
CALL MSTR(D)HR9,NSU 1) TWO 1070'

C TWO 1080
C * COMPUTE INVERSE OF MATRIX bRB TWO 1090

CALL SINV(BRBNSrPSOIER) TWO 1100
IF(IER) 80,100,90 TWO 1110

jou wRITE(6,lueU) K , EPSO TWO 1120
WRIE(6,Ob1060) .TWO 1130
CALL MXOUT (1,R,M,M,1,601321) TWO 1140
WRITE(,61070) TWO 1150;
CALL MXOUT(l, ,NS,M,0b06 132,1.) TWO 1160
WRITE(6,1060) TWO 1170
CALL MXOUT(1,HRH,NS,NS,1,60,132,1) TWO 1180
CALL ExIT . TWO 1190

90 wRITE(6,1030) K , EPSO TWO 1200-
WRITE(6,1060) TWO 1210
CALL MXOUT( 1,49MMl960t 1321) TWO 1220
wRITE(6,1070) TWO 1230
CALL MXOUT(1,eNS,M,0,bO,1321) TWO 1240
wRITE(b1080) TWO 1250
CALL MXOUT(1,HRHgriNS,NS,1,60,132,1) TWO 1260

C TWO 1270
C- - - - - - - - - - - - - - - - - - - - - - - - TWO*1271
C *** OPTION FOR OISREGARDINO 1ST THIM EQUALITY CONSTRAINT -- TWO*I272
C *** EQUATION REQUIRING ZERO NET FORCE IN Y-DIRECTION TWO*1273

100 IF(JPT(L)) i,g96,96b TWO*1274
95 AV(1) =HR(2)*AV(2).+ B~H(4)*AV(3) TWO*1275

HL(1) = HV(1) - AV(1)/HBR(1) TWO*1276
96 CONTINUE TWO*1278

C- -- - - - - - -- - - - - - - - - - - -- -- -TWO*1278
C TWO*1279
C *** COMPUTE CORRECTION TO LAMDA TWO 1280
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CALL (1MPi p(RHDXANSM I) TWO 1290

CALL MPH(RHBHXY,NSNS91901) TWO 1300

CALL mPO D(HR HL, A,NSN$, 10,1) TWO 1310

CALL rMvbU (X Y LA MNS) 1 TWO 1320

C , TWO 1330

C *** CONPUTE COkhECTION TO DELTA TWO 1340

CALL GMPHo(YRDEL*1NSM) TWO 1350

CALL MPH0(RlHDY,~,Mt ,0I1) TWO 1360

CALL C(MSU'(OELYOELMl) TWO 1370

CALL GMPRU(XRYlNSM) TWO 1380

CALL GMSUH ()EL9Y i)ELM, 1) TWO 1390
C TWO 1400

C ** COMPUTE NEW ESTIMATE OF DELTA TWO 1410

NORM = U. TWO 1420.

DO 110 I=l,M TWO 1430

NOHr = NORM + L)EL(1)**2 TWO 1440

110 DELTA(I) = O)ELTA(I) + O)EL(I) TWO 1450

C TWO 1460

C *** CoMPUTE NEw ESTIMATE OF LAMDA TWO 1470

DO 120 J=1YNS TWO 1480

NORt = NOrM + LAM(J)**? TWO 1490

12U LAM()A(J) = LAM)A(J) + LAM(J) TWO 1500

IF(ORM-EP~S) 160,1,O 130 TWO 1510

130 IF(K-K.MAX) 140,15U,150 TWO 1520

140 K = K + I TWO .1530

GO To 10 TWO 1540

150 WRITE(6*1040) K , FPSO', NORM TWO 1550

160 RETUPN TWO 1560

END TWO 1570
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GRAD 2 Flow Diagram

ENTER

" E Compute

CHmSt Cmpute

JPT(L), GRAD -

5--

TIME TX(L)(a b

HL = a' +b

1145

R K,L,NS,M, a, b, ab/66, 2b2 _0 IGRAD

B h = h' = ab/ 6
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GRAD2 Flow Diagram (Continued)

R-1

50 (1000) 60 (1010
MATRIX R . LOSS OF
IS NOT (- + SIGNIFICANCE
POSITIVE ER IN INVERTING

(BR- B')- 

80 (1020 . 90 (1030

MATRIX BRB LOSS OF
IS NOT - 'ER + SIGNIFICANCE
PO SITIVE  IN INVERTING
DEFINITE MATRIX BRB

100 (0)

LAM = 4. = - (BR- B' )- BR- h, + [(BR-B')- ]h

DEL = &_= -C I R - IR B' (BR- B')- BR-1 h -I B'(BR-1 B )- I



GRAD2 Flow Diagram (Continued)

DELTA =

LAMDA =

X. : _X+Ax

NORM =

II a 112 + la1 .112

NORM-< E

NO

140
130

K < KMAX K= K + i

150 1040)

K, EPSO,

NORM

RETURN
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C --------------------------------------------- SYS 0010
C SYS 0020

C SUHOUTINE SYSTEM(K,L,NSMDELTAIGRAD) SYS 0030

C SYS 0040

C ------------------------------------------------------------------ SYS 0050

C SYS 0060

C PURPOSE SUdROUTINE FOR COMPUTING THE COEFFICIENTS IN THE SYS 0070

C ------- EuUATIONS OF THE LATERAL DYNAMICS DEFINING THIM. SYS 0080

C ALSO EVALUATES THE CORRESPONDING DERIVATIVES REQUIRED SYS 0090

C BY THE GHADIENT METHODS. SYS 0100

C SYS 0110

C INPUTS K = NO. OF ITERATIONS. SYS 0120

C ------ L = NO. OF THE TRAJECTORY POINT. SYS 0130

C NS = NO. UF TRIM EQUATIONS. SYS 0140

C M = NO. uF TRIM ANGLES. SYS 0150

C DELTA = VECTOR OF TRIM ANGLES. SYS 0160

C IGRAO = ORDER OF bHADIENT METHOD TO BE USED. SYS 0170

C SYS 0180

C SUHROUTINES CALLED NONE SYS 0190

C ----------- ------ SYS 0200

C SYS 021.0

C smoonao w nseenessonSe S ow o SYS 0220

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * SYS 0230

C SYS 0240

SUBROUTINE SYSTEM(K,L,NSM,DELTA,IGRAD) SYS 0250

C SYS 0260

C SYS. 0270

DIMENSION DELTA(1) SYS 0280

COMMON /ARRAY/ AV(6b) bV(6)9 BM(60)9 BT(6960), RS, RV(10)9 RM(100)SYS 0290

COMMON /SYST/ YBT, HRT, Xl, X29 X39 X49 X5S XMRP, SYS 0300

1- S, 'REF, Yl Y2, Y39 Y49 Y5, YMRP, SYS 0310

2 Zi, Z2, Z3, Z49 Z5, ZMRP, SYS 0320

3 XCG(12), LCG(12)9 Q(12)9 V(12)9. VY(12), SYS 0330

4 F(12), FSRM(12) CYB(12), CLB(12), CNB(12)9 SYS 0340

5 DCYB(12), DCLB(12), DCNBA(12), DCNBF(12)9 CYA(12). SYS 0350

6 CLA(12), CNA(12), CYR(12), CLR(12)9 CNR(12) SYS 0360

DATA RAD / 57,e957795 / SYS 0365

C SYS 0370

C SYS 0380

IF(K) 300,100,300 SYS 0390

C *** COMPUTE VECTON A SYS 0400

100 CONTINUE SYS 0410
QS = Q(L) * S S.YS 0420
QSH = (S * BREF SYS 0430

BETA = AHSIN(VY(L)/V(L)) SYS 0440

C SYS 0450

CYBCG = CYB(L) +(OCYB(L))*RAD SYS 0460

CL8CG = CLB(L) +(DCLB(L))*RAD SYS 0470
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CNiCG = CNq(L) +(LCNbA(L) + DCNiF(L))*RAD SYS 0480
C SYS 0490

CLHCG = CLHCG + CYBC*(ZCG-(L)-ZMP)/BREF SYS 0500
CNHCG = CNHCG - CYC6*(XCG(L)-XMHP)/BREF SYS 0510

C SYS 0520
AV(1) = ~S * CYbCG * bETA SYS 0530
AV(2) = IS8 * CL8CG * BETA + RBT SYS 0540
AV(3) = US3 * CNBC * BETA + YBT SYS 0550

C SYS 0560
C ** COMPUTE COEFFICIENTS IN VECTOH b SYS 0570
C SYS 05801

RAD = 57.2957795 SYS 0590
Cl = COS(18./AD) SYS 0600
S1 = SIN(l ./RAD) SYS 0610
C2 = COS(1./RkAD) SYS 0620
S2 = SIN(12./RAU) SYS 0630
C3 = COS ( 3.5/RAU )  SYS 0640-
S3 = SIN(3.5/RAO) SYS 0650
C4= COS(1b./RAU) SYS 0660
S4 = SIN(15./AO) SYS 0670

C SYS 0680
CLACG = CLA(L) + CYA(L)o(ZCG(L)-ZMRP)/BREF SYS 0690
CNACG = CNA(L) - CYA(L)*(XCG(L)-XMRP)/BREF SYS 0700
CLRCG = CLR(L) * CYH(L)*(ZCG(L)-ZMRP)/BREF SYS 0710
CNRCG = CNR(L) - CYR(L)*(XCG(L)-xMRP)/HREF SYS 0720

C SYS 0730
BM(1) = F(L) * Cl SYS 0740
BM(2) =-F(L) * Cl * (ZI - ZCG(L)) SYS 0750
BM(3) = F(L) * Cl * (Xl - XCG(L)) SYS 0760
HM(4) = 2. * F(L) * C? a C3 SYS 0770
BM5S) .=-2. * F(L) * C2 * C3 * (Z2 - ZCG(L)) SYS 0780
BM(b) = 2. * F(L) * ((X?-XCG(L))*C3 - Y2*S3) * C2 SYS 0790
BM(7) = 2. * F(L) * S2 * S3 SYS 0800
BM(W) = 2 * F(L) * (Y2*C2 - (ZZ-ZCG(L))*S2*S3) SYS 0810
BM(9) = 2. * F(L) * ((Y2*C3 + (X2-XCG(L))*S3) * S2) SYS 0.820
HM(10.) = 2. * FSRM(L) * C4 SYS 0830
BM111) =-2. * FSRM(L) * C4 * (Z4 - ZCG(L)) SYS 0840
BM(12) = 2. * FSRM(L) * ((X4-XCG(L))*C4 - Y4*S4) SYS 0850
HM(13) = 0. SYS 0860
BM(14) = 2. * FSRM(L) * Y4 SYS 0870
BM(15) = 0. SYS 0880
8M(lb) = QS * CYA(L) SYS 0.890
8M(17.) = (S8 * CLACG SYS 0900
HM(18) = QS8 * CNACO SYS 0910
8M(19) = OS * CYH(L) SYS 0920
8M(20) = G58 * CLRCG SYS. 0930
BM(21) 2 QSH * CNRCG SYS 0940

C SYS 0950
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C- - - - - - - - - - - - - - - - - - - - - - - - SYS*0951

C *** OPTION FOR DISREGAHDIN6 AILERON SYS*0952

IF(lGRAD) 2903009300U SYS*0953
290 HM(lb) = UO SYS*0954-

HM(17) = 0. SYS*0955
HM(18) = 0. SYS*0956

IGRAD = - IRAD SYS*0957

C - - - - - - - - - - - - - - - - - - - - -- - - SYS*0958
C SYS*0959
C-*** COMPUTE VECTOR b SYS. 0960

300 CONTINUE SYS 0970

00 31U I=1INS SYS 0980

BV(I) = 0. SYS 0990
00 310 J=1,M SYS 1000
IJ = I + (J-1)*NS SYS 1010

310 HV(I) = BV(I) + BM(IJ)*DELTA(J) SYS 1020
C SYS 1030
C *** COMPUTE THE IST DENIVATIVE OF VECTOR 8 SYS 1040

C . SYS 1050
C (--- CONSTANT MATHIX COMPUTED ABOVE --- ) SYS 1060
C SYS 1070
C SYS 1080

IF(IGRAD-d) 600500.b00 'SYS 1090
C SYS 1100
C *** COMPUTE THE 2ND DERIVATIVE OF VECTOR H SYS 1110

500 CONTINUE SYS 1120
M2 = M*(M+1)/2 ''SYS 1130
00 510 J=1,NS SYS 1140
00 51u I=1M2 SYS 1150

510 BT(J,I) = 0. SYS 1160
600 RETURN SYS 1170

END SYS 1180
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SYSTEM Flow Diagram

Trim Equation

a+b(6) = 0 ENTER

b(no)= B6

? NO
K= 0

00ES

AV. a

Constant Term in Trim Equation

BM = B
Coefficients in Dependent Term
b (8) of Trim Equation

300

BV -b(6) = B8

Dependent Term of Trim Equation

BM ab/ O = B

First Derivative of Trim Equation

SNO
IGRAD 2

500

BT a 2b/a62= 0

Second Derivative of Trim Equation

600

151 RETURN



C -------------------------------------------- CST-------------------- 0010
C CST 0020

C SUHROUTINE COST(K,L,MDELTAIGRAD) CST 0030

C CST 0040

C ------------------------------------------------------------------CST 0050

C CST 0060

C PURPOSE SUBROUTINE FOR COMPUTING THE COEFFICIENTS IN THE CST 0070
C ------- PERFORMANCE CRITERION. CST 0080

C ALSO EVALUATES THE CORRESPONDING DERIVATIVES REQUIRED CST 0090
C BY THE GRADIENT METHODS. CST 0100
C CST 0110
C INPUTS K = NO. OF ITERATIONS. CST 0120'

C ------ L = NO. OF THE TRAJECTORY POINT. CST 0130
CM = NO. OF TRIM ANGLES. CST 0140

'C DELTA = VECTOR OF TRIM ANGLES. CST 0150
!C IGAD. = ORDER OF GRADIENT METHOD TO BE USED. CST 0160
C CST 0170

C SUBROUTINES CALLED NONE CST 0180
C ---------- ------ CST 0190
C CST 0200
C * * * * * * * * * * * * CST 0210

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * CST 0220

C CST 0230
SUBROUTINE COST(KLMDELTAIGRAD) CST 0240

C CST 0250
C CST 0260

DIMENSION C(7) , DELTA() CST.0270
COMMON /ARRAY/ AV(6), BV(6)q BM(60), BT(6960)' RS, RV(10)9 RM(100)CST 0280
COMMON /PERF/ wl(7)9 W2(7)9 DAMAX(12)9DRMAX(12)9 Q(12)9 CST 0290
1 DMAX9 SA, SR CDA' CDR CST 0300

C CST 0310
C CST 0320

IF(K) 1009200300 CST 0330
C CST 0340
C *** COMPUTE MINIMUM VALUE OF THE PERFORMANCE CRITERION CST 0350

100 CONTINUE CST 0360,
RS =.0. CST 0370

DO 110 I=1M CST 0380
110 RS = RS + C(I) * DELTA(I)**2 CST 0390

RS = RS / 2. CST 0400

GO TO 500 CST 0410
C CST 0420
C *** COMPUTE THE COEFFICIENTS IN THE PERFORMANCE CRITERION CST 0430

200 CONTINUE CST 0440
DO 210 I=1,5. CST 0450

210 C.(I) = (wl(I)/DMAX)*P2 + W2(I)**2 CST 0460
C(6) = (W1(6)/DAMAX(L))**2 + (W2(6)*Q(L)*SA*CDA)**2 CST: 0470
C(7) = (w1(7)/DRMAX(L))**2 + (W2(7)*Q(L)*SR*CDR)**2 CST 0480
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0)0 12 I=1M CST 0481
IF(wl(I)) 21192129212 CST 0482

211 C(I) = 1. / W1(I)**2 CST 0483

212 CONTINUE CST 0484
M2 = M*(M+I)/2 CST 0490

DO 220 I=1,M2 CST 0500

220 RM(I) = 0 CST 0510
DO 230 I=19M CST 0520

II = I*(I+1)/2 CST 0530

230 RM(II) = C() CST 0540

C CST 0550

C *** COMPUTE THE 1IST DERIVATIVE OF THE PERFORMANCE CRITERION CST 0560

300 CONTINUE CST 0570
DO 310 I=1,M CST 0580

310 RV(I) = C(I) * OELTA(I) .CST 0590
C CST 0600

IF(IGAOD-2) 500,4009500 CST 0610
C CST 0620
C ** COMPUTE THE 2ND DERIVATIVE OF THE PERFORMANCE CRITERION CST 0630

400 CONTINUE CST 0640
C CST 0650

C (--- CONSTANT MATRIX COMPUTED ABOVE ---) CST 0660

C CST 0670
500 RETURN CST 0680.

END CST 0690
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COST Flow Diagram

ENTER

0)
200

RM = R

Coefficients in the
Performance Criterion

100 ' 300

RS - e(6) =  'R6 RV E r/8. = R6

Minimum Value of the First Derivative of the
Performance Criterion Performance Criterion

NO
IGRAD = 2

YES
400

RM -a2r/6 = R

Second Derivative of the
Performance Criterion

500

1RETURN
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C -- SYM 0010
C SYM 0020

SJUBROUTINE GMSYMM(A89,N) SYM 0030
C SYM 0040
C ------------------------------------------..........................................-------------- SYM 0050
C SYM 0060
C PURPOSE COMPUTES A SYMMETRIC MATRIX' B FROM A SQUARE MATRIX A SYM 0070
C ------ ACCORDING TO SYM 0080
CR = ( A + At) / 2 SYM 0090
C SYM 0100
C INPUTS A = SQUARE MATRIX (STORAGE MODE = 0), SYM 0110
C ------ N = NO. OF ROWS AND COLS. IN A AND 8. SYM 0120
C SYM 0130
C OUTPUTS R = SYMMETRIC MATRIX FORMED FROM A (STORAGE SYM 0140
C MODE = 0). SYM 0150:C 

SYM 0160
C SURROUTINFS CALLED NONE SYM 0170
C -------- ----- SYM 0180
C SYM 0190
C * * * * * * * * * * * * * * * * * 4 * * 4 * 41 * * * 41 SYM 0200
C * * * 4 4 4 * 4 4 * * * 4 * 4 4 4 4 4 4 1 * 4 4 4 * SYM 0210
C SYM 0220
C SURROUTINE GMSYMM(AR8,N) SYM 0230
C SYM 0240
C SYM 0250

DIMENSION A(1) * R(1) SYM 0260
C SYM 0270
C SYM 0280

N1 = N - 1 SYM 0290
IF(N1) 20920,5 SYM 0300

5 no 10 J=1NI SYM 0310
J1 = J + 1 SYM 0320
nD 10 I=J1,N SYM 0330
IJ = (J-I)*N + I SYM 0340
JI = (I-1)*N + J SYM 0350
e(IJ) = 0.5 * (A(IJ) * A(JI)) SYM 0360

10 R(JI) = B(IJ) SYM 0370
20 DO 30 I=1,N SYM 0380

IJ =.(I-1)*N + I SYM 0390
30 R(IJ) = A(IJ) SYM 0400

RETURN SYM 0410
END SYM 0420
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GMSYMM Flow Diagram

ENTER

NI=N-1

N10

YES

J = 1,NI

J1 = J+

10 -Compute
I-I JN nondiagonial

I 10 elements of B
10

L .IJ= (J-1)*N +I

JI = (I-1)*N + J

- - B(IJ) = 0.5*(A(IJ) + A(JI))

B(JI) = B(IJ)

20
30

30 t Compute
diagonal

L IJ= (I-1)*N+I elements of B

B(IJ) = A(IJ)

RETURN
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C CPY 10
C ...............................................................MCPY 20
C MCPY 30
C SUBRCUTINE PCPY MCPY 40
C MCPY 50
C PURPCSE MCPY 60
C CCPY ENTIRE MATRIX MCPY 70
C MCPY 80
C USAGE MCPY 90
C CALL VCPY (AtRNtM S) vCPY 100
C FCPY 110
C CESCRIPTICN CF PARAMETERS PCPY 120.
C A - NAME CF INPUT MATRIX PCPY 130
C R - NAME CF OUTPUT MATRIX MCPY 140
C N - NUMBER OF ROWS IN A CR R MCPY 150
C M - NUMBER OF COLUMNS IN A OR R MCPY 160
C; MS - CNE CIGIT NUMBER FCR STORAGE MNODE OF MATRIX A (AND R) MCPY 170
C C - GENERAL MCPY 180
C 1 - SYMMETRIC MCPY 190
C 2 - CIAGONAL CPY 200
C MCPY 210
C REMARKS MCPY 220
C NONE MCPY 230:
C MCPY 240
C SUBROUTINES AND FLNCTION SUBPROGRAMS REQUIRED MCPY 250

C LOC MCPY 260
C MCPY 270
C METHCO MCPY .280
.C EACH ELEVENT OF MATRIX A IS MOVED TO THE CORRESPONDING MCPY 290

C ELEMENT CF MATRIX R MCPY 300
C vCPY 310
C *CPY 320
C MCPY 330

SUBRCUTINE MCPY(A,RN,M,vS) MC'PY 340
CIMENSION A(1)iR(1) MCPY 350

C MCPY 360
C CCOPUTE VECTCR LENGTH, IT MCPY 370

C MCPY 380
CALL LC(NMlltNMMS) MCPY 390

C MCPY 400
C CCPY MATRIX MCPY 410
C MCPY 420

CC 1 ItlIT MCPY 430
1 R(I)=A(I) MCPY 440
RETURN MCPY 450
ENC " CPY. 460
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C MSTR 10

C .......... **.*********** ********** ********* *.**** ***** ***** *****MSTR 20
C MSTR 30
C SUBROUTINE PSTR MSTR 40
C MSTR 50
C PURPOSE MSTR 60
C CHANGE STOCRAGE MODE OF A MATRIX MSTR 70
C MSTR 80
C USAGE MSTR 90
C CALL PSTR(ARNMSAMSR) MSTR 100
C MSTR 110
C DESCRIPTION OF PARAMETERS MSTR 120
C A - NAME CF INPUT MATRIX MSTR 130
C R - NAME CF OUTPUT MATRIX MSTR 140
C N - NUMBER OF ROWS AND COLUMNS IN A AND R MSTR 150
C MSA - ONE CIGIT NUMBER FOR STORAGE MODE OF MATRIX A MSTR 160
C 0 - GENERAL MSTR 170
C 1 - SYMMETRIC MSTR 180
C 2 - DIAGONAL MSTR 190
C MSR - SAME AS MSA EXCEPT FOR MATRIX R MSTR 200
C MSTR 210
C REMARKS MSTR 220
C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A MSTR 230
C MATRIX A MLST BE A SQUARE MATRIX MSTR 240
C MSTR 250
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MSTR 260
C LOC MSTR 270
C . MSTR 280
C METHOD MSTR 290
C MATRIX A IS RESTRUCTURED TO FORM MATRIX R. MSTR 300
C MSA MSR MSTR 310
C 0 0 MATRIX A IS MOVED TO MATRIX R MSTR 320
C 0 1 TIE UPPER TRIANGLE ELEMENTS OF A GENERAL MATRIX MSTR 330
C ARE USED TO FORM A SYMMETRIC MATRIX MSTR.340
C 0 2 THE DIAGONAL ELEMENTS OF A GENERAL MATRIX ARE USED MSTR 350
C TO FORM A DIAGONAL MATRIX MSTR 360'
C 1 0 A SYMMETRIC MATRIX IS EXPANDED TO FORM A GENERAL MSTR -370
C MATRIX MSTR 380
C 1 1 MATRIX A IS MOVED TO MATRIX R MSTR 390
C 1 2 THE DIAGONAL ELEMENTS OF A SYMMETRIC MATRIX ARE MSTR 400
C USED TO FORM A DIAGONAL MATRIX MSTR 410
C 2 0 A DIAGONAL MATRIX IS EXPANDED BY INSERTING MISSING MSTR 420
C ZERO ELEMENTS TO FORM A GENERAL MATRIX MSTR 430
C. 2 1 A DIAGONAL MATRIX IS EXPANDED BY INSERTING MISSING MSTR 440
C ZERO ELEMENTS TO FORM A SYMMETRIC MATRIX .MSTR 450
C 2 2 MATRIX A IS MOVED TO MATRIX R - MSTR 460
C MSTR 470
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C nSTR 490

SUBROUTINE MSTR(AR,NMSAvMSR) MSTR 500
DIMENSION AI1),R(1) MSTR 510

C .MSTR 520
DO 20 I=IN MSTR 530

00 20 J=1,N MSTA $40

C MSTR 550

C IF R IS GENERAL, FORM ELEPENT MSTR 560

C MSTR 70

IF(MSR) 5,10,5 MSTR 580

C MSTR 590

C IF IN LOWER TRIANGLE OF SYMMETRIC OR DIAGONAL R, BYPASS MSTR 600
C MSTR 610

5 IF(I-JI 10,10,20 MSTR 620

10 CALL LOC(I,J,IRN,tNMSR) MSTR 630

C MSTR 640

C IF IN UPPER AND OFF DIAGONAL OF DIAGONAL R, BYPASS MSTR 650

C MSTR 660
IF(IR) 20,20,15 MSTR 670

C MSTR 680

C OTHERWISE, FORM R(IiJ) MSTR 690

c MSTR 700

15 R(IR)=O.0 NSTR 710

CALL LOC(ItJIAN,NMSA) MSTR 720

C MSTR 730

C IF THERE IS NC A(tJ), LEAVE R(I,J) AT 0.0 MSTR 740

C MSTR 750
IF(IA) 20,20,18 MSTR 760

18 R(IRI=A(IA) MSTR 770
20 CONTINUE MSTR 7780

RETURN MSTR 790
END MSTR 800
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LOC 10

C . . . 000 0000 0000 0a 2 0

C 
LOC 40

C SUHROUTI"JE LOC LOC S0

C LOC 60
C PLJPPOSE
C COMPUTE A VFCTOR 'SUNSCHC I -OH AN ELEMENT IN A MATRIX OF LOC 70

G SPECIFTI- STO)RAG M('i)F LOC 80
C LOC 90

C USA(i LOC 100

C CALL LUC (I,.JI,NM,MS) 
LOC 110

C LOC 120

C nFSCPTPTTOTO N OF PAPAMETFRS LOC 130

C I - 0W0 NUN.HF OF ELEMENT LOC 140

C J - COLUMN NUMnER OF ELEMENT LOC 150

C TR - NESULTANT VECTOP SUHSCRIPT LOC 160

C N - NUM8Fq OF ROwS IN MATMIX :LOC 170

C M - NUMaEP OF COLUMNS IN M&THIX LOC 180

C - ONE ()I;IT NUMHER FOR STOHAGE MODE OF MATRIX LOC 190

C 0 - GENFJAL LOC 200

C I - SYMNETlIC LOC 210

C 2 - !IAGONAL LOC 220
C LOC 230

C REMARKS 
LOC 240

C N()NF 
LOC 250
LOC 260

C SUaPOUTINES ANO FUNCTION SUHPROGRAMS REQUIRED LOC 270

C NONE 
LOC 280

C LOC 290

C METHOO 
LOC 300

C MS= SUSC(-IPT IS COMPUTED FOR A MATRIX wlITH N*M ELEMENTS LOC' 310

(C IN STO(iAGE (GENF'AL MATRIX) LOC 320

C MS=1 SUHSCIIPT IS COMPUTE) FO4 A MATRIX WITH N*(N+1)/'2 IN LOC 330

'C STORAGE (UPPER TRIANGLE OF SYMMETRIC MATRIX). IF LOC 340

C ELEMFNT IS IN LOWER TRIANGULAR PORTION, SUBSCRIPT IS LOC 350

C CORRESPONDING ELEMENT IN UPPER TRIANGLE, LOC 360

'C MS=? SiRSCrIPT IS COMPUTEC. FOR A-MATRIX WITH N ELEMENTS LOC 370-

'C IN STORAGE ()IAGONAL ELEMENTS OF DIAGONAL MATRIX). LOC 380

'C IF ELEMENT Iz' NOT ON DIAGONAL (AND THEREFORE NOT IN LOC 390

C STORA4E) IR IS SET TO ZERO* LOC 400
,c LOC 410

•c "o***9s9**94,o , LO C 420

C LOC 430

SUAROUTINF LOC(IqJIPN,MSMS) LOC 440

'C 
LOC. 450

IX=I 
LOC 460

Jx=J LOC 470

TF(MS-1) 10.20930 LOC '480

10 IRX=N*(JX-1)+IX 
LOC 490

GO TO 36 LOC 500

20 IF(IX-JX) 22924,24 
LOC 510

22 IRX=IX+(JX*JX-JX)/2 LOC 520

GO TO 36 LOC 530

24 IPx=JX+(IX*IX-IX)/2 
LOC 540

Go TO 36 LOC 550

30 TQX=0 LOC 560

IF(IX-JX) 36,32936 
LOC 570

32 IwX=IX LOC 580

36 IR=IRX LOC 590

RFTURN LOC 600

•EN LOC 610
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C GMSU 10
C ****................ ...................... ......... ................GMSU 20
C GMSU 30
C SLBRCUTINE GfSUB GMSU 40
C GPSU 50
C PURPOSE " GMSU 60
C SUBTRACT CNE GENERAL MATRIX FRCOM ANOTHER TO FORM RESULTANT GMSU 70
C MATRIX GMSU 80
C GMSU 90
C USAGE GMSU 100
C CALL GMSLB(A,,R,NM) GMSU 110
C GMSU 120
C DESCRIPTION CF PARAMETERS GMSU 130
C A - NAME CF FIRST INPUT MATRIX GMSU 140'
C B - NAME CF SECOND INPUT MATRIX GMSU 150
C R - NAME CF OUTPUT MATRIX GMSU 160
C N - NUMBER OF ROWS IN Ae,R GMSU 170
C M - NUMBER OF COLUMNS IN A,BR GMSU 180.
C GMSU 190
C REMARKS GMSU 200
C ALL MATRICES MUST BE STORED AS GENERAL MATRICES GMSU 210
C GMSU 220
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED GMSU 230
C NONE GMSU 240
C GMSU 250
C METHOD GOSU 260
C MATRIX B ELEMENTS ARE SUBTRACTED FROM CORRESPONDING MATRIX AGMSU. 270
C ELEMENTS GMSU 280
C GNSU 290
C ********** *** *** *** ** *** *** ** *.. . . . . . . . . . .*.. . .*.. . . .... .... GVSU 300
C GMSU 310:.

SUBRCUTINE GMSLE(ABRN,M) GMSU 320
DIMENSION A(1),8(1),R(1) G.MSU 330

C GMSU 340
C CALCULATE NUMBER OF ELEMENTS GMSU 350
C GMSU 360-

NM=N*M GMSU 370
C GVSU 380
C SUBTRACT MATRICES GMSU 390
C GMSU 400

DC 10 I=1,NM GMSU 410
10 R(I)=A(I)-8(I) GMSU 420

RETURN GMSU 430
END GPSU 440
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C GMPR I0

C ............ .... ................... ..................... ......... GMPR 20

C GMPR 30

C SLBRCUTINE GNPRD GMPR 40

C GPPR 50

C PURPCSE CGPR 60

C MLLTIPLY T6C GENERAL MATRICFS TO FORM A RESULTANT GENERAL GMPR 7C

C MATRIX GMPR 80

C GMPR 90

C USAGE GMPR 100

C CALL GMPRC(A,B,R,N,M,L) GMPR 110

C GMPR 120

C DESCRIPTICN CF PARAMETERS GFPR 130

C A - NAME CF FIRST INPUTl MATRIX GMPR 140

C B - NAME CF SECOND INPUT MATRIX GMPR 150

C R - NAME CF OUTPUT MATRIX GMPR 160.

C N - NUMBER CF ROWS IN A GMPR 170

C M - NUMBER CF COLUMNS IN A AND RCWS IN B GfPR 180

C L - NUMBER CF COLUMNS IN B GMPR 190

C GMPR 2CC

C REMARKS GMPR 210

C ALL MATRICES MUST bE STOREC AS GENERAL MATRICES GMPR 220

C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A GMPR 230

C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX B GMPR 240

C NUMBER CF COLUMNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROWGMPR 250

C OF MATRIX B GMPR 260

C GVPR 270

C SUBROUTINES AND FUNCTION SUbPROGRAMS REQUIRED GMPR 280

C NONE GMPR 290

C GMPR 300

C METHOD GVPR 310.

C THE M BY L MATRIX B IS PREMULTIPLIED BY THE N BY M MATRIX A GVPR 320

C AND THE RESULT IS STORED IN THE N BY L MATRIX R.. GMPR 330

C GMPR 340

C ........... • *. .... ....... . .*** *.** . .*.* ...... .. .. ....GMPR 350
C GMPR 360-

SUBROUTINE GMPRC(A,B,R,N,M,L) GMPR 37C

OIMENSION A(1),B(1),R(1) GMPR 380

C GMPR 390,

IR=O GMPR 400

IK=-M GMPR 410

CO 10 K=1,L GMPR 420

IK=IK+M GMPR 430

C( 1C J=1,N GMPR 440

IR=IR+1 GMPR 450

JI=J-N GMPR 460

IB-IK GYPR 470

R(IR)=O GMPR 480
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C . *GMTR 10

C G F TR 20
C • GMTR 30

C SUBRCUTINE GMTRA GMTR 40
C GMTR 50

C PURPOSE GPTR 60

C TRANSPOSE A GENERAL MATRIX GMTR 70

C GMTR 80

C USAGE GMTR 90

C CALL GMTRA(A,R,NMV) GMTR 100
C GMTR 110

C DESCRIPTION CF PARAMETERS GMTR 120

C A - NAME CF MATRIX TO BE TRANSPOSED GMTR 130

C R - NAME CF RESULTANT MATRIX GMTR 140

C N - NUMBER OF ROWS OF A AND COLUMNS OF R GMTR 150

C M - NUMBER OF COLUMNS CF A AND ROWS OF R GMTR 160

C GMTR 170

C REMARKS GMTR 180

C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A GMTR 190

C MATRICES A AND R MUST BE STORED AS GENERAL MATRICES GMTR 200

C _ GMTR 210

C SUBRCUTINES AND FUNCTION SUBPROGRAMS REQUIRED .GMTR 220

C NONE GMTR 230

C GMTR 240

C METHOC GMTR 250

C TRANSPOSE N BY M MATRIX A TO FORM M BYV N MATRIXR GMTR 260
C GMTR 270

C ........ ***************.... ..... *...............*..o*...... .. GMTR 280

C GMTR 290

SUBROUTINE GMTRA(A,RtNM) GMTR 300

CIMENSION A(1),R(1) GMTR 310

C 
GMTR 320

IR=0 GVTR 330

DC 10 I=1,N GMTR 340

IJ=I-N GMTR 350

DC 1C J=1,M GMTR 360

IJ=IJ+N GMTR 370

IR=IR+1 GMTR 380

10 R(IR)=A(IJ) GMTR 390

RETURN GMTR 400

END GMTR 410
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CC IC I=l,M GFPR 490
JI=JI+N GPR 500

IB=Il+l GVPR 510

10 R(IR)=R(IR)+A(JI)*B(IB) GMPR 520

RETURN GVPR 530

ENC GMPR 540
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C MPRC 1C
C .................. ...... •.. ........ M... .. PRD 20
C MPRC 30
C SUBRCUTINE MPRO MPRC 40
C MPRD 5C
C PURPCSE MPRC .60
C MULTIPLY ThCO ATRICES TO FCRM A RESULTANT MATRLX MPRD 70
C MPRC 80
C USAGE MPRD 90
C CALL MPRC(A,B,RN,M,MSAVSB,L) MPRD 100
C MPRD 110
C DESCRIPTION CF PARAMETERS MPRD 120
C A - NAME CF FIRST INPUT MATRIX MPRC 130
C b - NAME CF SECOND INPUT MATRIX MPRO 140
C R - NAME CF OUTPUT MATRIX MPRD 150
C N - NUMBER CF ROWS IN A AND R MPRD 160
C- M - NUMBER OF COLUMNS IN A AND ROWS IN B MPRD 170
C MSA - CNE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A MPRD 180
C C - GENERAL MPRD 190
C 1 - SYMMETRIC MPRD 200
C 2 - DIAGUNAL MPRD 210
C MSe - SAME AS MSA EXCEPT FOR MATRIX B MPRD 220
C L - NUMBER OF COLUMNS IN B AND R MPRD 230
C MPRD 240
C. REMARKS MPRD 250
C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRICES A OR B MPRD 260
C NUMBER OF COLUMNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROWMPRD. 270
C OF MATRIX 8 MPRD- 280
C MPRD 290
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MPRD 300
C LOC MPRD 31b
C MPRD 320
C METHOD MPRO 330
C THE M BY L MATRIX B .IS PREMULTIPLIED BY THE N BY M MATRIX A MPRO 340
C AND THE RESULT IS STORED IN THE N BY L MATRIX R. THIS IS A MPRO 350
C ROW INTO CCLUMN PRODUCT. MPRD 360
C THE FOLLChINC TABLE SHOWS THE STORAGE MODE OF THE OUTPUT MPRD 370
C MATRIX FCR ALL COMBINATIONS OF INPUT MATRICES MPRD 380
C A B R MPRD 390
C GENERAL GENERAL GENERAL MPRD 400
C GENERAL SYMMETRIC GENERAL MPRD 410
C GENERAL DIAGONAL GENERAL MPRD 420
C SYMMETRIC GENERAL GENERAL MPRD 430
C SYMMETRIC SYMMETRIC GENERAL MPRD 440
C SYMMETRIC DIAGONAL GENERAL MPRD 450
C CIAGONAL GENERAL GENERAL MPRD 460
C DIAGONAL SYMMETRIC GENERAL MPRO 470
C DIAGONAL DIAGONAL DIAGONAL MPRD 480
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C MPRC 490
C ..................... ........................................ PRD 500
C MPRC 510

SUBRCUTINE MPRC(AB,RNM,MSAtSBL) MPRC 520
CI ENSION A(1), (1l),R(1) NPRD 530

C VPRC 540
C SPECIAL CASE FOR DIAGONAL BY DIAGONAL MPRO 550
C MPRC 560

MS=VSA*10+MSB MPRD 570
IF(S-22) 30,10,30 PPRD 580

10 DC 20 I=1,N MPRD 590
20 R(I)=A(I)*B(I) MPRC 600

RETURN MPRO 610
C PRD 620
C ALL OTHER CASES MPRD 630
C MPRC 640

30 IR=1 MPRO 650
OC ~O K=1,L MPRD 660
DC 90 J=I,N MPRD 670
R(IR)=O MPRC 680
CC eC I=I,9 MPRD 690
IF(PS) 40,60,4C MPRO 700

40 CALL LOC(Jl,,IA,N,MMSA) MPRD 710
CALL LOC(ItKIe,WL,MSB) MPRC 720
IF(IA) 5C,80,5C MPRD 730

50 IF(IP) 70,P0,7C MPRD 740
60 IA=N*(I-1)+J VPRD 750

IB=V*(K-1)+I MPRC 760
70 R(IR)=R(IR)+A(TA)*B(IB) MPRD 770
80 CONTINUE MPRO 780
90 IR=IR+1 MPRD 790

RE TURN MPRD 800
END MPRD 810
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iEAl '; r')UTTINF CCUTI

C 
20C .... 0. C C U T 2 0C "'* * .*****************.....***** ** * *..********....., ,,...CCUT 20

CCUT 30C . SLJ OUITI1F CCLJT 
CCUT 40
CCUT 50C PUNP(Io. CCUT 60C tPATITION A MATrIX HETwEEN SP~CIFIED COLUMNS TO FORM TWO CCUT 70C PE'ULTANT MATkICES 'CCUT 80"

C 
CCUT 9.0

C USAGF. CCUT 100
C CALL CCUT (AL*, .i.,MS) CCUT 110C 

CCUT 120
C OI- SCI rlTIiN OF PAqAmF TEFS CCUT 130
C A - NAME OF INPUT 'AT.IX CCUT 140C L - COLUMN OF A TO TME LEFT OF wHICH PARTITIONING TAKES CCUT 150
C PLACE CCUT 160C - N4mF OF PAT IX TO HE FOi MEi) FROM LEFT PORTION OF A CCUT 170
C. S - NAMF OF '4ATIX TO HE FONME0U FROM RIGHT PORTION OF A CCUT 180C N - NL #ER OF HOWS IN A CCUT 190
C M - NUJHER OF COLU-NS IN A CCUT 200
C MS - ONE I)I(IT NOkEoq FOR STORAGE MODE OF MATRIX A CCUT.210
C 0 - GFNFwAL CCUT 2.20C 1 - SYvmTw~IC CCUT 230
C 2 -I)TA(, ).AL CCUT 240C CCUT 250
C REMARK S CCUT 260C MATRIX P CANNOT BE IN SAME LOCATION AS MATRIX A CCUT 270
C MATklx S CANtJNO1 HE IN SAME LOCATION AS MATRIX A CCUT 280
C 1'ATwIX N CANNO)T dE. IN SAME LOCATION AS MATRIX S CCUT 29'0
C MAT IX R ANO MATRIx S AHE ALWAYS GENERAL MATRICES CCUT 300
C 

CCUT 310
C SUOOUTINES AND FIlNCTION SUHPROGOHAMS REQUIRED CCUT 320
C Ltr CCUT 330

CCUT 340
C MFTHon CCUT 350
C ELEMENTS OF MATRIx A To THE LEFT OF COLUMN L ARE MOVED TO CCUT 360C FOm MATRIX k OF N WO$*S 4NO L-i COLUMNS. ELEMENTS OF CCUT 370
C .MATRIX A IN COLUMN L AND TO THE RIUHT OF L ARE MOVED TO FORMCCUT 380C MATRIX S OF N ROWS AND .M-L+1 COLUMNS. CCUT 390.
C CCULT 400C 

o..... ............. . .. ..***** *************,**,,oe . *CCUT 410
C 

CCUT 420
;SUNROUTINE CCUT(AqL9+9SqNqMqS) CCUT 430
DIMENSION A(1)qR(1),S(1)

C CCUT 440
CCUT 450
CCUT 460
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CCUT 470

rn 7o .J=l,' CCUT 480

)0 70 ]=1,N CCUT 490

C CCUT 500

C FTND I(OCAlION Il 4oUTPUT MATrIX AND SET TO ZFRO CCUT 510

C 
CCUT 520

TJ(J-L) ?0,10U.10 CCUT 530

i) TS=IS+1 
CCUT 540

S(I) =0.0 CCUT 550

'( TO 3 CCUT 560

20) Tw=IR+1 CCUT 570

u(T)=0.0  
CCUT 580

C 
CCUT 590

C L(OCAT EL k EN FO,-O ANY MAT IJX STOHAGFE MOOF CCUT 600

C CCUT 610

30 CALL LOC(TqJIJN,,MmS) CCUT-620

C CCUT 630

C TFST FOkR ZF O F.FMENT IN IIA(GONAL MATrIX CCUT 640

C CCUT 650

IF(1J) 40970,40 CCUT 660

C 
CCUT 670

C DETE FMINE WHEIHE PIHT Ok LEFT OF L CCUT 680

C CCUT 690

40 TF J-L) 5050,0 CCUT 700

o r(IS)=A(TJ) CCUT 710

(;n TI 70 CCUT 720

60 W UT)=A(Ij) CCUT 730

70 Or.NTINUF CCUT 740

PFTUPN CCUT 750

Fr~in CCUT 760
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C M INV 10
C M**i.e... * N.... .................................. e .MINV 20
C MINV 30.
C SUBROUTINE PINV MINV 40
C MINV 50
C PURPOSE MINV 60
C INVERT A MATRIX MINV 70
C MINV 80
C USAGE PINV 90
C CALL MINV(A#Ntt,L#P) MINV 100
-C MINV 110
C DESCRIPTION CF PARAMETERS MINV 120
C A - INPUT MATRIXi DESTROYED IN COMPUTATION AND REPLACED BY MINV 130
C RESULTANT INVERSE. MINV 140
C N - ORDER CF MATRIX A INV °150
C 0 - RESULTANT DETERMINANT MINV 160
C L - WORK VECTOR OF LENGTH N MINV 170
C M - WORK VECTOR OF LENGTH N MINV 180
C PINV 190
C REMARKS MINV 200
C MATRIX A MLST BE A GENERAL MATRIX MINV 210
C MINV, .220
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MINV 230
C NONE MINV 240
C MINV 250
C METHCD MINV 260
C THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT MINV 270
C IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT MINV 280
C THE MATRIX IS SINGULAR. MINV 290
C MINV 300
C **,* * * * * * * .., .. *.**************.-*****--*.- .-- ..- .. *.. ...... MINV .310
C MINV 320

SUBROUTINE MINV(ANDL9,V) MINV 330
DIMENSION A(1)4L(1),M(1) MINV 340

C MINV 350
C "****..****d...... .&INV..............* *............... INV 360
C INV 360
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE NINV 380
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION MINV 390
C STATEMENT WHICH FOLLOWS. [INV 400
C MINV 410
C DOUBLE PRECISICN AtDBIGAHOLD wINV 420
C MINV 430
C THE C MUST ALSO BE REMOVED FRCM DOUBLE PRECISION STATEMENTS M INV 440.
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS MINV 450
C ROUTINE. MINV 4.60
C MINV 470
C THE DOUBLE PRECISION VERSION CF THIS SUBROUTINE MUST ALSO MINV 480
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C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. AeS IN STATEMENT MINV 490

C 10 MUST BE CHANGED TO DABS. MINV 500

C MINV 510

C ***********2***************************************************MINV 520
C MINV 530

C SEARCH FOR LARGEST ELEMENT MINV 540

C MINV 550

C=1.0 MINV 560

NKu-N PINV 570

CC 80 KulN MINV 580

NKINK+N MINV 590

L(K)=K MINV 600

M(K)=K MINV 610

KK*NK+K MINV 620

BIGA-A(KK) MINV 630

CO 20 J=KN MINV 640
IZ*N*(J-1) PINV 650

DO 20 IwK,N MINV 660

IJ=IZ+I MINV 670

10 IF( ABS(BIGA)- AeS(A(IJ))) 15,20,20 MINV 680

15 BIGA=A(IJ) MINV 690

L(K)=I MINV 700

P(K)zJ MINV 710

20 CONTINUE MINV 720

C MINV 730

C INTERCHANGE RChS PINV 740

C MINV 750

J=L(K) MINV 760

IF(J-K) 35,35,25 MINV 770

25 KIRK-N MINV 780

CC 30 I=1,N MINV 790
KI=KI+N MINV 800

HOLO=-A(KI) MINV 810

JIaKI-K+J .MINV 820
A(KI)=A(JI) MINV 830

30 A(JI) =HOLD MINV 840

C MINV 650

C INTERCHANGE CCLUMNS MINV 860

C MINV 870

35 I*V(K) MINV 880

IF(I-K) 45,45,38 MINV 890

38 JPuN*(I-I) MINV 900

CO 40 J=1,N MINV 910

JK*NK+J MINV 920

JIUJP+J MI NV 930

HOLD=-A(JK) MINV 940

A(JK)-A(JI) MINV 950

40 A(JI) sHOLD MINV 960
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C MINV 970
C CIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS MINV 980
C CONTAINED IN BIGA) MINV 990
C. MINV1000

45 IF(BIGA) 48,4648 MINV 1-010
46 DC.0 MINVI020

.RETURN MINV1030
48 CC 55 I=1,N MINV1060

IF(I-K) 50C5505C MINV1050
50 IK-NK+I MINV1060

A(IK)=A(IK)/(-BIGA) MINV1070
55 CONTINUE MINVI080

C MINV1090
C REDUCE MATRIX MINV1100
C MINV3110

DC 65 I*lN MINV1120
IK*NK+I PINVI130
HOLD=A(IK) MINV1140
IJOI-N MINV1150
00 65 JaI,N MINVII60
IJaIJ+N MINVI170
IFII-K) 60,65,6C MINVI180

60 IF(J-K) 62,65,62 MINV1190
62 KJ*IJ-I+K PINV1200

A(IJ)=HOLC*A(KJ)+A(IJ) MINV1210
65 CONTINUE MINVI220

C MINV1230
C DIVICE ROW BY PIVOT MINV1240
C MINV1250

KJ*K-N MINV1260
DC 75 Jw1,N MINVI270
KJaKJ+N MINVI280
IF(J-K) 70,75,7C MINV1290

70 A(KJ)=A(KJ)/BIGA MINV1300
75 CONTINUE MINV1310

C MINVI320
C PRODUCT OF PIVCTS MINV1330
C MINVI340

IO *BIGA MINV1350
C MINV1360 i
C REPLACE PIVCT BY RECIPROCAL MINV1370
C, MINV1380

A(KK)-l.0/8IGA MINV1390
80 CONTINUE WINV1400

C MINV1410
C FINAL ROW AND COLUMN INTERCHANGE INKV14Z20
C MNNV1430

K*N MINV1440
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1CC K*(K-1) nINV1450

IF(K) 150,15C,1C5 VINV1460

105 I-L(K) PINV1470

IF(I-K) 120,12C,1C8 IINV1480

108 JC=N*(K-1) PINV1490

JR=N*(I-I) MINVISCO

CO 110 J=l,N PINVIS10

JKJCg+J PINV1520

HOLC=A(JK) PINVI530

JI=JR+J MINV1540

A(JK)=-A(JI) MINV1550

110 A(JI) =HOLD WINV1560

120 J=M(K) MINV1570

IF(J-K) 100,10C,125 VINV1S80

125 KI*K-N MINV1590

CC 130 I=lN FINV1600

KI=KI+N PINV1610

FOLC=A(KI) MINVI620

JIsKI-K+J VINV163C

A(KI)=-A(JI) MINV1640

130 A(JI) =HOLD PINV1650-

GO TO 100 MINVI660

150 RETURN KINV1670

ENC MINV1680
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C SINV 10

C . . ..e m . . e.. .0 a.. e..a.. .e.o...e.eel....a.... . -. **e*******S I N V 20

C SINV 30
C SUBRCUTINE SINV SINV 40

C SINV 5C
C PURPOSE SINV 60
C INVERT A GIVEN SYMMETRIC PUSITIVE DEFINITE MATRIX SINV 70

C SINV 80
C USAGE SINV 90
C CALL SINV(A,NEPSIER) SINV 100

C SINV 110
C CESCRIPTION CF PARAMETERS SINV 120

C A - LPPER TRIANGULAR PART OF THE GIVEN SYMMETRIC SINV 130
C POSITIVE DEFINITE N BY N COEFFICIENT MATRIX. SINV 140

C ON RETURN A CCNTAINS THE RESULTANT UPPER SINV 150
C TRIANGULAR MATRIX. SINV 160

C N - THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX. SINV 170
C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE SINV 180.

C TCLERANCE FOR TEST ON LOSS OF SIGNIFICANCE. SINV 190
C IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS SINV 200

C -- - IER=O - NO ERROR SINV 210
C IER=-1 - NO RESULT BECAUSE OF WRONG INPUT-PARAME- SINV 220

C TER N CR BECAUSE SOME RADICAND IS NON- SINV 230

C POSITIVE (MATRIX A IS NOT POSITIVE SINV 240

C DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI- SINV- 250

C .FICANCE) SINV 260
C IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI- SINV. 270
C CANCE. THE RADICAND FORMED AT FACTORIZA- SINV 280

C TION STEP K+1 WAS STILL POSITIVE BUT Nd SINV 290

C LONGER GREATER THAN ABS(EPS*A(K+1,K+1)). SINV 300

C SINV 310.
C REMARKS SINV 320

C THE UPPER TRIANGULAR PART CF GIVEN MATRIX IS ASSUMED TO BE SINV 330

C STORED CCLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.SINV 340

C IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU- SINV 350

C LAR MATRIX IS STORED COLUMNWISE TOO. SINV 360-

C THE PROCECURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL SINV 370

C CALCULATEC RADICANDS ARE PCSITIVE. SINV 380

C SINV 390

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SINV 400

C MFSC SINV 410
C SINV 420
C METHOD SINV 430

C SOLUlION IS DONE USING THE FACTORIZATION BY SUBROUTINE MFSD.SINV 440

C SINV 450,
C .** **** **** * * * * ** **** ** **.**.***SINV 460

C SINV 470
SUBROUTINE SINV(AN,EPS, IER) SINV 480
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C SINV 490
C SINV 500

DINENSICN A(1) SINV 510
DOUBLE PRECISICN DIN,WORK SINV 520

C SINV 530
C FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE VFSD SINV 540
C A = TRANSPCSE(T) * T SINV 550

CALL MFS (A,NEPS,IER) SINV 560
IF(IER) 9,1,1 SINV 570

CC SINV 580
C INVERT UPPER TRIANGULAR MATRIX T SINV 590
C PREPARE INVERSION-LCOP SINV 600

1 IPIV=N*(N+1)/2 SINV 610
IND=IPIV SINV 620.

C SINV 630
C INITIALIZE INVERSION-LOOP SINV 640

CO 6 I=1,N SINV 650
CIN=1.00/DBLE(A(IPIV)) SINV 660
A(IPIV)=DIN SINV 670
MIN=N SINV 680
KENC=I-1 SINV 690
LANF=N-KEND SINV 700
IF(KEND) 5,5,2 SINV 710

2 J=INC SINV 720
C SINV .730
C INITIALIZE RC-LUOP SINV 740

DO 4 K=1,KEND SINV 750
WCRK=O.CO SINV 760
VIN=MIN-1 SINV 770
LHCR=IPIV SINV 780
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MFSD 10
So** ** * * * **** ******* **--o*o,*-,oo o , .oo aooo, oo o ooooMFSO 20

C MFSD 30
SU4OUJTINE 4FSil MFSD 40

MFSD 50
PUPOSRF MFSD 60

FACTOP A GIVFN SYM4ETIC POSITIVE DEFINITE MATRIX MFSD 70
MFSD 80

IJSAfrF' MFSD 90
C CALL 4Fi0 )(A NeEPS,IEP) MFSD 100

MFSD 110
nFSCRIPTTON OF PARAMETERS MFSD 120

A - UPPFH TRIANGULAR PART OF THE GIVEN SYMMETRIC MFSD 130
C OSITIVE DEFINITE N BY N COEFFICIENT MATRIX. MFSD 140
ON RETURN A CONTAINS THE RESULTANT UPPER MFSD 150
TRIANGULAR MATRIX. MFSD 160

C N - THE NUMER OF ROWS (COLUMNS) IN GIVEN MATRIX. MFSD 170

TOLeRANCE FOR TEST ON LOSS OF SIGNIFICANCE. MFSD 190
TEP - .FSULTING EFROR PARAMETER CODED AS FOLLOWS MFSD 200

IFR=O - NO ERROR MFSD 210
IFW=-1 - NO RESULT BECAUSE OF WRONG INPUT PARAME- MFSD 220STR N OR BECAUSE SOME RADICAND IS NON- MFSD 230

C POSITIVE (MATRIX A IS NOT POSITIVE MFSD 240
DEFINITE* POSSIHLY DUE TO LOSS OF SIGNI- MFSD 250
FICANCE) MFSD 260

IFR=K - WAkNING WHICH INDICATES LOSS OF SIGNIFI- MFSD 270
C CANCE, THE RADICAND FORMED AT FACTORIZA- MFSD 280

TION STEP K+1 WAS STILL POSITIVE BUT NO MFSD 290
LONGER GREATER THAN ABS(EPS*A(K+1K+1)). MFSD 300

C MFSD 310
REMARKS MFSD 320

THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE MFSD 330
STORED COLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.MFSD 340

C IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU- MFSD 350
LAR MATRIX IS STORED COLUMNwISE TOO. MFSD 360
THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL MFSD 370
CALCULATED qADICANDS APE POSITIVE, MFSD 380
THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE MFSD 390
SQUARE-ROOT OF THE )ETERMINANT OF THE GIVEN MATRIX, MFSD 400

MFSD 410
C SURROUTINES ANn FUNCTION SUHPrOGRAMS REQUIRED MFSD 420

NONF MFSD 430
MFSD 40.0

METHOD MFSD 450
C SOLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY. MFSD 460

THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULARMFSD 470
MATRICES, WHERE THE LEFT HAND FACTOR IS THE TRANSPOSE OF MFSO 480

C THE RETURNED RIGHT HAND FACTOR. MFSD 490
MFSD 500

**************************************** -*******a**s**,,*,** .OMFSD 510
" MFSD 520

SURROUTINF MFSD(AgNEPSIER) MFSD 530
MFSD 540
MFSD 550

DIMENSION A(1) MFSD 560
DOUBLE PRECISION OPIV,DSUm MFSD 570

I MF.SD 580
TEST" ON WRONG INPUT PARAMETER N MFSD 590

IF(N-1) 1. 91, " MFSD 600
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1 TE=0 MFSD 610
C MFSD 620
C INITIALIZE DIACONAL-LOOP MFSD 630

KPIV=0O MFSD 640
DO 11 <=1.N MFSD 650
KPTV=KPIV+K MFSD 660
TN!)=KPTV MFSO 670
LFJD=K- 1 MFSD 680

C MFSD 690
C CALCULATE TOLF ANCE MFSD 700

TOL=AHS(FPS*A(KPTV)) MFSD 710
C MFSD 720
C START FACTOqI/ATIO.i-LOOP OVER K-TH ROW MFSD 730

nO 11 T=K,'I M'FSD 740
ODSJM=O.n00 MFSD 750
TF(LEND) 2,492 MFSD 760

C MFSD 770
C START INNE LOOP MFSD 780

S00 3 L=1,LENO MFSD 790
LANF=KOIV-L MFSD 800
LIND=INO-L MFSD 810

3 OSIJM=DSUM+DRLE(A(LANF)*A(LIND)) MFSO 820
C END OF INNER LOOP MFSD 830
C MFSD 840
C TRANSFOPA ELFMENT A(INO) MFSD 850

4 OSIM=DRLF(A(INO))-0S(jm MFSD 860
TF(I-K) 10,5,10 MFSD 870

C MFSD 880
C TEST FOR NEGATTVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE MFSD 890

5 TF(SNGL(DSUM)-TOL) 6,699 MFSD 9.00
6 IF()DSJU) 12,12,7 MFSD 910
7 IF(IER) 8,8,9 MFSD 920
A IEFQ=K-1 MFSD 930

C MFSD 940
C COMPUTE PIVOT ELEMENT MFSD 950

9 DPTV=DSORT(DSUM) MFSD 960
A(KPIV) =PIV MFSD 970
DPTV=1.00/1PIV MFSD 980
G( TO 11 MFSD 990

C MFSD1000
C CALCULATE TERMS IN POW MFS1010

10 A(JND)=DSI.JM*D9IV MFSD1020
11 IN)=IND+I MFSD1030

C MFSD1040
C END OF DIAGONAL-LOOP MFSD1050

RETURN MFSD1060
12 IE=-1 MFS01070

RETURN MFSD0180
ENO MFS0I1090
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C MXOU 10
C .. *.... .****** ******.********** *****.* *,** .o...................MXOU 20
C MXOU 30
C SURPOUTINE MXOUT MXOU 40
C MXOU 50
C PtUPOSF MXOU 60
C PoOnUCE AfN riUTPUT LISTING OF ANY SIZED ARRAY ON MXOU 70
C I.OLICAL UNIT 6 MXOU 80
C MXOU 90
C USAGE , MXOU 100
C CALL MXOUT(ICODEoA,NMMSLINSI,POSgISP) MXOU 110
C MXOOU 120
C DESCRIPTION OF PAPAMETENR MXOU 130
C ICOOE- INPUT COUE NUMAER TO qE PRINTED ON EACH OUTPUT PAGE MXOU 140
C A-NAM4F OF OUTPUT PMATRIx MXOU 150
C N-NUMPER OF ROWS IN A MXOU 160
C M-NUMHER OF COLUMNS IN A ..MXOU 170
C MS-STORAGE MODE OF A wHERE MS= MXOU 180
C M-GFNERAL MXOU 190
C 1-SYMMETRIC MXOU 200
C ?-DIAGONAL . MXOU 210
C LINS-NUMHER OF PRINT LINES ON THE PAGE (USUALLY 60) MXOU 220
C IPOS-NUMBER OF PRINT POSITIONS ACROSS THE PAGE (USUALLY 132).MXOU230
C ISP-LINE SPACING COD)E, 1 FOR SINGLE SPACE9 2 FOR DOUBLE MXOU 240.
C SPACE MXOU 250
C MXOU 260
C REMARKS MXOU 270
C THIS SUHROUTINE HAS BEEN MODIFIED BY M.HUTTON ON 11/27/71 MXOU 280
C TO REDUCE THE AMOUNT OF EXTRA PRINTOUT. TO RETURN THE MXOU.281
C SURROUTINE TO ITS ORIGINAL FORM MODIFY CARDS 280948095909 MXOU 282
C' 650,900,920 ACCORDI)I TO THE SSP MANUAL AND REMOVE CARDS MXOU 283
C 2?1-284,591. MXOU 284
C MXOU 290
C .SUBROUTINES ANn FUNCTION SUBPROGRAMS REQUIRED MXOU 300
C LOC MXOU 310
C MXOU 320
C :METHOD MXOU 33'0
C THIS SUBROUTINE CREATFS A STANDARD OUTPUT LISTING OF ANY MXOU 340
C -SIZED ARRAY WI.TH ANY STORAGE MODE. EACH PAGE IS HEADED WITH MXOU 350
C ' THE CODE NUMRER,DIMENSIONS AND STORAGE MODE OF THE ARRAY. MXOU 360
C EACH COLUMN AND ROW IS ALSO HEADED WITH ITS RESPECTIVE MAOU 370
C NUMHER. MXOU 380
C MXOU 390
C .... o.............................................................MXOU 400
C MXOU 410

SUBPOUTINE MAOUT (ICODE,AN,MMSLINSIPOSISP) MXOU 420
DIMENSION A(1)8(8) MXOU 430

1 FORMAT(H.';X, 7H4ATPIX ,IS,6XI3,SH ROWS.6X91398H COLUMNS. MXOU 440
AIRX13HSTORAGE MODE ,I1,RXSHPAGE I2,/) MXOU: 450

2 FORMAT(12X8HCOLUMN ,7(3XI3,10X)) MXOU 460
3 FORMAT(lH ) MXOU 470
4 FORMAT(1H .4X,7(F16.6)) MXOU 480
5 FORMAT(HO4X7(E16.6)) MXOU 490

C 4 FORMAT(1H 914X,6(Fl8.4)) MXOU 480
C 5 FORMAT(1HO,14X,6(E18.8)) MXOU 490
C MXOU 500

J=1 MXOU 510
C- MXOU 520
C WRITE HEADING MXOU 530
C 7 MXOU 540
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NFN)=I POS/16-1 MXOU 550
LEND=(I. TNS/TSP)-2 MXOIJ 560
IPAGE=1 MXOU 570

10 LSTPT=1 MXOU 580
C ?0 WRITE(6q1)TCOUE NMMSeIPAGE MXOU 590

?0 CONiTINUF MXOU 591
J.T=J+NFNn-I MXOU 600
IPAGE=TPAGE+1 MXOU 610

31 IF(JNT-M)33,33,32 MXOU 620
32 JNT=M MXOU 630
33 CONTINUE MXOU 640

C WrTTE(6,2)(JCUPJCU=J,,JNT') MXOU 650
IF(ISP-1) 3,35,40) MXOU 660

35 WRITE(6h3) MXOU 670
40 LTFNO=LSTqT+LENn-1 MXOU 60

00 80 L.=LSTTLTE Th MXOIJ 690
C MXOU 700
C FOMu OUTPUT O) LINF MXOU 710
C MXOU 720

00 5~ K=1NFNfI MXOU 730
KK=K MXOU 740
JT = J+K-1 MXOU 750
CALL LOC(LJTIJJNTN,MMS) MXOU 760
R(K)=0.0 MXOU 770
IF(IJNT)50.50,45 MXOU 780

45 R(K)=A(IJNT) MXOU 790
50 CONTINUE MXOU 800

C MXOU 810
C CHECK IF LAST COLUMN.. IF YES ~0 TO 60 MXOU 820
C MXOU 830

TF(JT-M) 5,b60.60 MXOU 840
55 CONTINUE MXOU 850

C MXOU 860..
C END OF LINE* NOW wRITE MXOU 870
C MXOU 880

60 IF(ISP-1)6 i,670 MXOU 890
65 WRTTE(6,4) (1(JW),Jw=1,KK)" MXOU 900.

GO TO 75 MXOU 910
70 WRTTE(6,5) (k(JW).Jw=1,KK) MXOU 920

MXOU 930
C 'TF ND OF POWSG0 CHECK COLUMNS MXOU 940
C MXOU 950

.75 .IF(N-L),% 85,O) MXOU 960
80 CONTINUE MXOU 970

C .MXOU 980
C END OF PAGE, NOW CHECK FOR MORE OUTPUT MXOU 990
C MXOUlo00

LSTRT=LSTPT+LNo MXU001010
GO TO 20 MXOUI020

C MXOU1030
C END OF COLUMNS9 THEN RETURN MXOU1040
C MXOU1050

A5 IF(JT-M)90,99595 MXOU1060
90 J=JT+1 MXOU1070

GO TO 10 MXOU1080
95 RETURN MXOU1090

FNo MXOUo10.o
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APPENDIX D PROCEDURE FOR ELIMINATING CONSTRAINT

EQUATIONS IN TRIM PROBLEM

For linear dynamics and a quadratic performance criterion the trim problem can be

written in the form

0 = a + B6 (1)

r = 1/2 6'R6 (2)

with

a = constant vector of dimension n

6 = control vector of dimension m > n

B = nxm coefficient matrix

R = mxm positive definite weighting matrix

The objective is to find the set of control angles 6 that satisfy (1) and minimize (2). The

trim solution is given by

86 -Ba (3)

# -1 -1 -1
B = R B' (BR B') (4)

*The mxn matrix B is a right inverse of B , i.e., BB = I

Consider the new trim problem that results from eliminating k of the n equality

constraints. Suppose that the first k constraint equations in (1) are to be disregarded. The

problem can always be written in this form by reordering the equations if necessary. Partitioning

(1) gives that the new trim problem is

0 = a 2 + B26 n  (5)

r = 1/2 8' Rn (6)
n n

where

(7)
n-k n -k
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The solution to the new trim problem is

6 = - R-1 B(B 2 R -1B)'a (8)

The following question is of interest: Without starting the problem over again,

is it possible to compute 6n using the solution for 6 ? The answer is affirmative and

a procedure for computing 8n is developed below.

From the partitioning (7) of the B matrix

R B' = R-B' R

-1 -1-1'  R B', BR B (9)
R-1 B' BR-1

_I 1 1 (10)

B2 R; B' 2R R;

Taking the inverse of (10) results in

k .- n-k--

Q1 Q2 k
-1 -

(BR -1 B')  ------- (11)

Q2 Q3 n-k

where

Q1 
= E

Q2 = -E -1B1 R -1B'2 (B2 R -1 B2

Q3 = (B2 R -1 B R--1BE B1R B2(B2 R B2)- + (B2 R- 1B2

and

E -BR-1 B' -BIR-IB'(B2R-
1B )-1 B2R-IBI

Premultiplying (11) by (9) yields the right inverse of the B matrix in partitioned form
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B #1 I 82

where

= I R7 I B2 2(B2R B2 B2] R B'E (12)

= -. R- 12R B )-lB2 R-IBE R 2 (B2RB) + R B (BR B)

Substituting (12) into (3) and using (7) gives that

8= -Ba 1 - B a2 (13)

If we substitute

a = BIR-B1B (B2 R B).-a 2  (14)

into (13) then from (8) and (12) it follows that

8=8 (15)

This result states that if the first k elements in the vector a are replaced by the values

computed from (14) then the solution to the original trim problem becomes the solution to

the new trim problem created by eliminating the first k constraint equations.

It is apparent from comparing (11) to (14) that (14) can be replaced by

-1
a = -Q 1  2 a2  (16)

This is a more useful equation for computing the new value of al since Q1 and Q2

are submatrices of a matrix computed in the solution of. the original problem.

To summarize, the steps for computing 8 are as follows:
n

1) Start the computation of 6 using (3) and (4) in the usual way.

2) After computing (BR- 1B') - 1 form the submatrices Q1 and Q2 according to (11).

3) Replace subvector a1 in a by the value computed from (16).

4) Continue the computation of 8 in the usual way. The result will be 6= 6,n

The above procedure for computing 8n does not offer any particular advantage over

using (8) if the calculations are to be done by hand. If a computer program, on the other hand,

has been developed to compute 6 then the above procedure minimizes the amourit of program

modification required to compute 6
n
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APPENDIX E VERIFICATION OF TRIMS PROGRAM

Lateral trim of the Space Shuttle is an example of the linear trim problem. The linear

trim problem is to find the control deflections 6 satisfying the equality constraints

a + B6 = 0

and minimizing

J = 1/2 6'R6

The solution is

6=-Ba

B# = - R-B'(BR B',)-1

The problem of Space Shuttle trim in roll and yaw (two constraint equations) using the

following four control deflections:

* yaw deflection of orbiter engine 1

* yaw deflection of orbiter engines 2 and 3

e pitch deflection of orbiter engine 2
(negative of the pitch deflection of orbiter engine 3)

* rudder deflection

was solved at MSFC. The control deflection angles vs flight time for the case when the R

matrix is

R = Diag C0.49, 0.49, 0.49, 1.003

and the bias torques due to misalignments are

roll torque = 0.87x 106 N'm

yaw torque = 3.02 x 106 N'm

are plotted in Figure El.

The solution to (supposedly) the same trim problem was also computed using the TRIMS

program as a check of the program. The resulting plot of control deflection angles vs flight

time is shown in Figure E2. The TRIMS computation was repeated except without the dorsal
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fins and the trim solution is plotted in Figure E3.

The results in Figures E2 and E3 computed by TRIMS do not agree with the results in

Figure El obtainid by MSFC. A comparison of the results does not indicate the reason for

the difference. The computation of 8 land B# from a , B , and R in the TRIMS program was

checked against hand calculations. Most likely, the area of difficulty is in the computation

of the vector a and matrix B from the equations of motion.
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Figure E 1 Trim Soltuion Computed at MSFC
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Figure E 2 Control Deflections vs Flight Time for Space Shuttle Trim in Roll and Yaw with Addition of Dorsal Fins
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Figure E 3 Control Deflections vs Flight Time for Space Schuttle Trim in Roll and Yaw
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